INFORMATION TO USERS

This material was produced from a microfilm copy of the origınal document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as recelved.

University of Illinois at UrbanamChampalgn, Ph.D., 1976 Accounting

Xerox University Microfilms, Ann Arbor, Michigan 48106

REPORTING OF EXTRAORDINARY ITEMS AND THE

 BEHAVIOR OF SECURITY PRICESBY
thomas arthur buchian
B.S., University of Illinois, 1965
M.A.S., University of Lllınois, 1970

THESIS

Submitted \ln partial fulfillment of the requirements for the degree of Doctor of Philosophy in Accountancy in the Graduate College of the University of Illinois at Urbana-Champaign, 1976

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

WE HEREBY RECOMMEND THAT THE THESIS BY

ENTITLED \qquad REPORTING OF EXTRAORDINARY ITEMS AND THE BEHAVIOR OF

SECURITY PRICES

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF._ DOCTOR OF PHILOSOPHY

Kearien Hesconkel

[^0]
ACKNOWLEDGMENTS

My sincere thanks to my committee members, Norton M. Bedford, Joseph J. Schultz, Jr., Richard E. Flaherty, Marvin Frankel, and particularly James C. McKeown for their guidance during the completion of this research. I am also grateful for the advice received from Larry Lookabill while he was on my committee.

A special note of thanks is due to my wife, Barbara, not only for her encouragement, but also for the hours she spent helping me gather the data used in this study.

TABLE OF CONTENTS

CHAPTER Page
I INTRODUCTION 1
1.1 Statement of the Problem. 1
1.2 Historical Development of Views Toward Extra- ordinary Items. 3
1.2.a American Institute of Certified Public Accountants 3
1.2.b American Accounting Association 6
1.2.c Securities and Exchange Conmission. 7
1.3 Purpose and Motivation of the Study 8
1.4 The Approach and Organization of the Research 10
II LITERATURE REVIEW AND DISCUSSION OF THE MODEL. 12
2.1 Introduction. 12
2.2 Stock Prices, Investor Expectations and Information 12
2.3 The Market Model. 14
2.4 Accounting Implications of the Market Model 21
2.5 Possible Motivation in Regard to Extraordinary Item Presentation 22
2.6 Research on Stock Market Prices and Extraordinary Items 26
2.7 Implications of Past Research 33
III RESEARCH METHODOLOGY 34
3.1 Overview of Methodology 34
3.2 Firm Selection and Data Sources 35
3.3 Income Expectation Models 39
3.4 Determination of Forecast Error 42
3.5 Portfolio Construction. 43
3.6 Measurement of Stock Market Response. 47
3.7 Evaluating Security and Portfolio Returns 51
3.8 Descriptıve Statıstics. 53
IV RESULTS OF RESEARCH. 54
4.1 Introduction. 54
4.2 Results of Tests 54
4.2.a API and Statistical Tests by Model and Portfolio 54
CHAPTER Page
4.2.b API and Statistical Tests of Portfolio Combinations. 58
4.2.c API and Statistics Calculated by Sign of Net Extraordinary Item(s) and Whether the Firms Announced or Did Not Announce that They Would Report Extraordınary Item(s) 63
4.2.d API and Statistics by Sign and Materiality of Extraordinary Item(s) 66
4.2.e Lag Between Fiscal Year End and Earnings Announcement 68
4.3 Summary of Research Results 71
V SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 74
5.1 Summary 74
5.2 Lumitations 77
5.3 Conclusions 77
5.4 Recommendations for Future Research 79
LIST OF REFERENCES 81
APPENDICES 85
A. DATA GATHERING SHEETS. 86
B. FIRMS REPORTING EXTRAORDINARY ITEMS USED IN THIS STUDY 88
C. DATA COLLECTED FOR FIRMS REPORTING EXTRAORDINARY ITEMS 91
D. EXTRAORDINARY ITEMS REPORTED BY TYPE AND YEAR. 93
E. CODES USED FOR EXTRAORDINARY ITEMS 94
F. CONTROL FIRMS USED IN THIS STUDY 95
G. DATA COLLECTED FOR FIRMS NOT REPORTING EXTRAORDINARY ITEMS. 98
H. INDUSTRY ASSOCIATED WITH TWO-DIGIT STANDARD INDUSTRIAL CODE (1972) 101
I. REJECTED INCONE EXPECTATION MODELS 102
J. EARNINGS FORECASTS AND PORTFOLIO CLASSIFICATION BY MODEL FOR FIRMS REPORTING EXTRAORDINARY ITEMS. 104
K. EARNINGS FORECASTS AND PORTFOLIO CLASSIFICATION BY MODEL FOR FIRMS NO' REPORTING EXTRAORDINARY ITEMS 107
L. REGRESSION COEFFICIENTS FOR FIRMS REPORTING EXTRA- ORDINARY ITEMS 110
M. REGRESSION COEFFICIENTS FOR FIRMS NOT REPORTING EXTRAORDINARY ITEMS 113
N. REGRESSION BETAS BEFORE AND AFTER EARNINGS ANNOUNCE- MENT 116
O. NUMBER OF FIRMS IN EACH TWO-DIGIT SIC CODE 117
P. DAY OF THE WEEK EARNINGS WERE ANNOUNCED 118
Q. WEEKLY API BY PORTFOLIO. 119
CHAPTER Page
R. COMPOSITE WEEKLY API 127
S. AVERAGE WEEKLY API FOR FIRMS ANNOUNCING AND NOT ANNOUNCING EXTRAORDINARY ITEMS BEFORE WEEK ZERO. 135
T. AVERAGE WEEKLY API FOR FIRMS REPORTING NET EXTRA-ORDINARY LOSSES CLASSIFIED BY WHETHER THEYanNounced the extraordinary Items Prior to weekZERO OR NOT.137
U. CLASSIFICATION OF FJRMS BY SIGN OF NET EXTRAORDINARY ITEMS AND WHETHER THEY ANNOUNCED OR DID NOT ANNOUNCE THAT THEY WOULD HAVE EXTRAORDINARY ITEM(S) 139
V. AVERAGE WEEKLY API FOR FIRMS REPORTING NET EXTRA- ORDINARY GAINS CLASSIFIED BY WHETHER THEY ANNOUNCED THE EXTRAORDINARY ITEMS PPIOR TO WEEK ZERO OR NOT. 141
W. AVERAGE WEEKLY API FOR FIRMS REPORTING EXTRAORDINARY ITEMS CLASSIFIED BY MATERIALITY OF THE EXTRAORDINARY GAIN OR LOSS (NET) 143
X. CLASSIFICATION OF FIRMS BY SIGN AND MAGNITUDE OF NET EXTRAORDINARY ITEMS. 145
Y. WEEK ZERO API BY FIRM. 147
VITA 150

LIST OF TABLES

TABLE Page
1 CUMMINGS' CLASSIFICATION OF EVENTS. 23
2 SIGNS OF UNEXPECTED EARNINGS VARIABLES BY PORTFOLIO 43
3 NUMBER OF FIRMS IN EACH PORTFOLIO BY MODEL. 45
4 NUMBER OF FIRMS REPORTING NET EXTRAORDINARY GAINS OR \quad LOSSES IN PORTFOLIOS ONE, TWO, FOUR AND FIVE. 46
5 COMBINATIONS OF PORTFOLIOS OF FIRMS WITH THE SAME SIGN
OF UNEXPECTED EARNINGS BEFORE EXTRAORDINARY ITEMS . . . 47
6 WEEK ZERO API BY PORTFOLIO. 56
7 CLASSIFICATION OF FIRMS BY PORTFOLIO BY SIGN OF FIRM API
8 FISCHER EXACT PROBABILITY TEST RESULTS ON CLASSIFICATION OF FIRMS BY PORTFOLIO BY SIGN OF FIRM API AS OF WEEK ZERO. 59
9 WEEK ZERO API BY MODEL AND PORTFOLIO COMBINATION 61
10 NUMBER OF TIMES THE SIGN OF FIRM API AGREES WITH THE SIGN OF e_{t} 62
11 WEEK ZERO API FOR FIRMS ANNOUNCING AND NOT ANNOUNCING 64
12 WEEK ZERO API FOR FIRMS ANNOUNCING AND NOT ANNOUNCING BY SIGN OF NET EXTRAORDINARY ITEMS 65
1314PORTFOLIO CLASSIFICATIONS FOR FIRMS BY SIGN ANDMATERIALITY OF EXTRAORDINARY ITEMS68
15 MEAN WEEKLY LAG BETWEEN FISCAL YEAR END AND EARNINGS ANNOUNCEMENT DATE BY PORTFOLIO. 70
16
TEST OF LAG BETWEEN FISCAL YEAR END AND EARNINGS ANNOUNCE- MENT DATE FOR FIRMS REPORTING NET EXTRAORDINARY GAINS, NET EXTRAORJINARY LOSSES AND NO EXTRAORDINARY ITEMS 70
17 SIGN OF UNEXPECTED EARNINGS IN EACH PORTFOLIO 76

LIST OF ILLUSTRATIONS

ILLUSTRATION Page
1 Portfolio Selection Given Rısk and Expected Return. 15
2 The Feasible Set and Efficient Frontier 17
3 The Feasible Set and Efficient Frontier with Riskless Assets 18

CHAPTER I

INTRODUCTION

This chapter briefly outlines the problems surrounding the reporting of extraordnary 1 tfins in published financial statements, the purpose and motivation of the study, and the approach and organization of the research.

1.1 Statement of the Problem

The accounting profession has long been concerned with determining the best method of presenting nonrecurring, nonoperating items in published financial statements. Initially the argument centered around presenting these items on the income statement or presenting them in the statement of retained earnings. Concurrent with the decision to place extraordinaxy items on the income statement was the question of where on the income statement these items should appear: in the main body of the statement or in a separate section.

Essentially, the question has been one of where is the "best" place to put this bit of accounting data so that it is "properly" utilized by financial statement users in their decision models.

Most arguments for a particular method of presenting extraordinary items have one weakness: they make assumptions about the decision models used by the financial statement users. For example, those arguing for inclusion of extraordinary items in the income statement believed
that this presentation would be more easily understood by the reader and would allow the reader to make appropriate classifications to arrive at an "appropriate" measurement of income (American Institute of Certified Public Accountants, 1961, Chapter 8), while the advocates for the presentation of extraordinary items in the statement of retained earnings (the current operating concept of income) argued that income calculated in this manner provided a more meaningful net income for interperiod and interfirm comparison and for decisions regarding future income of the firm (American Institute of Certified Public Accountants, 1961, Chapter 8). Unfortunately, there has been little research about this aspect of investors' decisions to confirm or disprove either of these arguments.

Since "[a]cccounting information is the chief means of reducing the uncertainty under which external users act as well as a primary means of reporting on stewardship" (American Accounting Association, 1966, p. 19), it follows that accountants should consider what items affect and don't affect user decisions.

A Statement of Basic Accounting Theory points out that the ". . . past earnings of the firm are considered to be the most important single item of information relevant to the prediction of future earnings" (American Accounting Association, 1966, pp. 23-24). These predictions are necessary in the case of present and potential equity investors because future dividends and market prices of stock are a function of future earnings. Accountants must therefore measure and report earnings information in such a manner as to give the investors as much information
as practicable so they may make their predictions with a minimum of uncertainty.

Studies of the Efficient Market Hypothesis (EMH) (Fama, 1970) indicate that the capital market $1 s$ efficient in the semi-strong form. The semi-strong form of the EMH asserts that a firm's current security price reflects all publicly available information concerning the firm. If this is true, it would indicate that it doesn't matter where information is disclosed on the financial statements; investors will use the information to adjust the firm's security market price swiftly and in an unblased manner.

1.2 Hıstorical Development of Views Toward Extraordinary Items

To obtain a clear understanding of the present attitude toward the presentation of extraordinary items, it may be beneficial to briefly review the positions taken by the American Institute of Certified Public Accountants (AICPA), American Accounting Association (AAA), and the Securities and Exchange Comnission (SEC).

1.2.a American Institute of Certified Public Accountants

The AICPA's initial position on extraordinary items essentially
favored the current operating concept of net income. Accounting Research
Bulletin Number 32, Income and Earned Surplus (American Institute of
Accountants, 1947, pp. 262-263) contains the following statement:
The committee has previously indicated that, in its opinion, it is planly desirable that over the years all profits and losses of a business be reflected in net income but at the same time has recognized that, under appropriate circumstanres, it is proper to exclude certaın material charges and credits from the determanation
of the net income of a single year, even though they clearly affect the cumulative total of income of a series of years. In harmony with this view, it is the opinion of the committee that there should be a general presumption that all items of profit and loss recognized during the period are to be used in determining the figure reported as net income. The only possible exception to this presumption relates to items which in the aggregate are material in relation to the company's net income and are clearly not identifiable wath or do not result from the usual or typical business operations of the period. Thus, only extraordinary items such as the following may be excluded from the determination of net income for the year, and they should be excluded when their inclusion would impair the significance of net income so that misleading inferences might be drawn therefrom:
(a) Material charges or credits (other than ordinary adjust.ments of a recurring nature) specifically related to operations of prior years, such as the elimination of unused reserves provided in prior years and adjustments of income taxes for prior years;
(b) Materıal charges or credits resulting from unusual sales of assets not acquired for resale and not of the type in which the company generally deals;
(c) Material losses of a type not usually insured against, such as those resulting from wars, riots, earthquakes, and similar calamities or catastrophes except where such losses are a recurrent hazard of the business;
(d) The write-off of a material amount of intangibles;
(e) The write-off of material amounts of unamortized bond discount or premium and bond issue expenses at the time of the retirement or refunding of the debt before maturity.

However, there seemed to be some uncertanty as to whether this
was the best way to handle extraordinary items because the bulletin added (p. 264):

The committee directs attention to the undesirability in many cases of the dissemination of information in which major prominence is given to a single figure of net income or net income per share. However, if such income data are reported (as in newspapers, investors' services, and annual corporate reports), the committee strongly urges that any determination of income per share be related to the amount designated in the income staterient as net income and that where material extraordinary cnarges or credits have been excluded from the determination of net income, the corresponding total or per-share amount of such charges and credits also be reported separately and simultaneously. In this connection the committee earnestly solicits the cooperation of all organizations, both governmental and private, engaged in the compilation of business earnings statistics from annual reports.

This bulletin was subsequently reprinted as Chapter 8 of Accounting Research Bulletin, Number 43 (American Institute of Certified Public Accountants, 1961).

In 1966, the Accounting Pranciples Board (APB) issued Opinion Number 9, Reporting the Results of Operations (American Institute of Certified Public Accountants, 1966) which superseded Chapter 8 of ARB No. 43. Opinion No. 9 modified the previous stand of the AICPA in that it concluded that net income should reflect all items of profit and loss recognized during the perıod except for prior period adjustments, with extraordinary items beang shown separately as an element of net income of the period. Extraordinary items were to be identıfied primarıly by the nature of their underlying occurrence in that they would ". . . be of a character significantly different from the typical or customary business activitics of the entity . . ." and would not ". . . be expected to recur frequently and which would not be considered as recurring factors in any evaluation of the ordinary operating process of the business" (pp. 114-115).

Opinion No. 26, Early Extinguishment of Debt (American Instıtute of Certıfied Public Accountants, 1972) stated that gains or 1osses resulting from the extinguishment of debt before scheduled maturity should be recognized in the period of extinguishment and that the criteria in Opinion No. 9 should be used to determine whether the ganns or losses are ordinary or extraordinary.

In 1973, the APB issued Opinion Number 30, Reporting the Results of Operations (American Institute of Certified Public Accountants, 1973) in which they attempt to tighten the requirements for classifying items
as extraordinary by stating that "Extraordinary items are events and transactions that are distinguished by their occurrence" (p. 564). The board andicates that it feels that events or transactions that meet both criteria will be rare (p. 566).

In summary, the AICPA seems to have changed its position drastically on the handing of extraordinary items from excluding extraordinary items from the calculation of net income to uncluding extraordinary items in the calculation of net income.

1.2.b American Accounting Association

In 1936, the AAA published A Tentative Statement of Accounting
Princıples Underlyıng Corporate Financial Statements (American Accounting Associatıon, 1957) 1 n which that organization stated its position regardıng the inclusion of extraordinary items in the income statement:

The income statement for any given period should reflect all revenues properly given accounting recognition and all costs written off during the period, regardless of whether or not they are the results of operations in that period: to the end that for any period of years in the history of the enterprise the assembled income statements will express completely all gains and losses. (p. 62)

Specifically with regard to extraordınary items it said:
The income statement for any period should, where necessary, be divided into two sections, one showing particulars of operations for the period measured as accurately as may be at the time, and the other showing realized capital gains and losses and extraordinary credits and charges resulting from income realization and cost amortization not connected with the operation of that period. (p. 62)

In 1957, the AAA issued Accounting and Reporting Standards for
Corporate Financial Statements--1957 Revision (American Accounting Associ-
ation, 1957) in which it advocated the use of two income figures:
realized net income of an enterprise and net income to shareholdars:

The realized net income of an enterprise measures its effectiveness as an operating unit and is the change in its net assets arising out of (a) the excess or deficiency of revenue compared with related expired cost and (b) other ganns or losses to the enterprise from sales, exchanges, or other conversions of assets. Interest charges, income taxes, and true profit-sharing distributions are not determinants of enterprise net income.

In determaning net income to shareholders, however, interest charges, income taxes, profit-sharing distributions, and credits or charges arısing from such events as forgiveness of indebtedness and contributions are properly included. In financial reports and discussions alıke, care should be exercised to indicate whether enterprise net income or net income to the shareholders is at issue. (p. 5)

Although not explicitly stated, the definition of realized net income implies that extraordinary items would be included in its determınation.

A Statement of Basic Accounting Theory (American Accounting Association, 1966), while on a different level than the previous AAA works cited earlier, $1 m p l i e s$ in its illustration $1 n c o m e$ statement (p. 85) that extraordinary items should appear on the income statement.

Thus it appears that the AAA has consistently recommended that extraordinary items appear on the income statement as a regular item of ancome or expense before net ancome is calculated.

1.2, c Securities and Exchange Commission

The SEC has always encouraged development and improvement in accounting practice. While the SEC has the authority to enforce adherence to its rules, it has usually let the accounting profession determine the princıples and practices it will follow, for the SEC ". . . will look to the APB to play the major role in the development of accounting principles and djsclosure requirements so as to improve corporate financial reporting" (Rappaport, 1972, p. 3.8).

However, at ". . . the same time the Commission has not hesitated to criticize and prod, and to disciplane members of the profession when circumstances warranted" (The Journal of Accountancy, 1964, pp. 56-58).

The SEC expressed its opinion of the income statement in Accounting
Series Release Number 53 In 1.945 (Bernstein, 1967, p. 24):
We conclude, then that the proper function of an income statement is to present an accurate historical record. On this basis, it is evident that the items included therenn should clearly and accurately reflect only actual operations.

SEC Regulation S-X contains the following provision under Rule 5-03
(Rappaport, 1972, pp. 18.21, 18.22):
(a) All items of profit and loss given recognition in the accounts during each period covered by the income statements, except retroactive adjustments, shall be included in the income statement for each such period . . .
(b) Only items entering into the determination of net income or loss may be included.

This rule also requires that extraordnary items are to be stated separately after net income before extraordinary items.

In a recent Accounting Series Release (Securıties and Exchange Commission, 1973, p. 2), the SEC restated $1 t s$ belief that the disclosure, to investors, of extraordinary items is very important:
. . . the Commission believes that substantial additional disclosure in regard to extraordinary items and material unusual charges and credits to income or major provisions for loss is necessary to enable public investors to assess the impact of such items. This would include transactions that are classified as extraordinary items under generally accepted accounting principles and other unusual or non-recurring materıal transachions or provisjons for loss . . .

1.3 Purpose and Motivation of the Study

The purpose of this study is to provide additional information
on what influences investor decisions regarding the purchase and sale of
securities. Specifically, the study attempts to answer the question: which figure, net income or net income before extraordinary items, do investors appear to utilize in theır investment decisions when buying or selling securities.

While this study is not intended to be a critıque of Accounting Principles Board Opanion Number 30, Reporting the Results of Operations (Amerıcan Instıtute of Certıfied Public Accountants, 1973) dealing with extraordinary items, it may be found that the proposed method of dealing with extraordınary items might not lead to "optımal" investment decısıons from the point of view of the investment community.

Investors presently have the alternative of deciding for themselves which figure, net income, or net income before extraordınary ıtems, best represents a firm's yearly income for their investment decisions and they can act accordingly. When the proposed opinion takes effect, however, the extraordinary 1 tem classification will practacally be elımi-nated--leaving only net income. If investors are found to appear to use net income before extraordinary items in their decision-making, then they might make investment "errors" after Opınion 30 takes effect if functional fixation exists. However, if investors use the final net income figure in decision-making or if the capital market is efficient in the semi-strong form, these classifications on the income statement should not matter.

The method of accounting for extraordinary items for the period covered by this study (assuming Opinion No. 9 has been followed) should
provide a method of studying the effect of extraordinary item on investors' decısions. There are important implıcations for those preparing financial statements depending on how investors "react" to extraordinary items. If investors base their decasions on net income before extraordinary $1 t e m s$, then $1 t$ may be possible for firms to manıpulate stock prices by classifyıng (or not classifying) something as an extraordanary item, As Cushing (1969) points out, a firm is more likely to report an extraordinary item in the years that their net income would otherwase reverse the trend that has been established by their net income figures over the past several years.

Several writers have been prolufic in discussions concerning what materıalıty means in reference to extraordinary items reported in the income statement. Past researchers have used experimental (Rose, Beaver, Becker, and Sorter, 1970) or questionnaire (Bernstein, 1967) techniques and have assumed that the items in question are important to decision makers. Theur research has shown that an item that is (approximately) 10% of net income influenced decision makers. It has not shown, however, that a material unusual, nonrecurring item should be reported in a separate section in the income statement.

1.4 The Approach and Organization of the Research

The approach of this study will be to Infer from measured security price changes anvestors' reaction to the reporting of extraordinary items in annual financial statements.

Chapter II examines the model to be used in this research and also past research on stock price behavior in response to accounting information.

Chapter III describes the research methodology to be used in the study.

Chapter IV presents the research findings of the study.
Chapter V states the conclusions and recommendations reached by the study.

- LITERATURE REVIEW AND DISCUSSION OF THE MODEL

2.1 Introduction

The first portion of this chapter will review past empirical research investigating possible managerial motivation for reporting extraordinary items on the income statement and also stock market responses to accounting information.

The second portion of thas chapter will review the development of the Sharpe-Lintner model, which will be used to ascertaln the stock market response to extraordinary atems presented in the income statement and will discuss some relevant research which has used the model, including some dealing with extraordinary 1 tems.

2.2 Stock Prices, Investor Expectations and Information

Stock prices have long been regarded as being a function of several. factors (Graham, Dodd, and Cottle, 1962, p. 443):

$$
P_{t}=f(Y, D, M, A)
$$

where
$P_{t}=$ price that an investor is whling to pay for the serurity at time t,
$Y=$ expected future earnings,
D $=$ expected future dividends,
$M=$ multiplier (or capltalization rate) of the earnings and dividend,
$A=$ asset values.

A change in the price of the security could be caused by a change in investor expectations regarding one or all of the factors of the relationships above. Expectations can be modified because stımuli received do not coincide with anticipated stimuli (expectations held immediately prior to stimuli reception). In the model of stock prices above, new information recelved that modifies the investors' priors concerning the model elements may cause a change in the price.

Thus, as May (1971) has pointed out, ". . . in theory at least, one can gauge the effect of a partıcular bit of new information by measuring the change in a stock's price that resulted from it."

However, 1 n practice 1 t is more difficult to 1 solate the effect of a particular bit of information on a stock's price change. This study, however, attempted to do that using the model descrıbed in section 2.3 .

Following Sharpe's dıagonal model (1963), King (1966), using factor analysis, attempted to isolate the impact of various "lumps" of information on stock prıces. Using 63 farms on the New York Stock Exchange from 6 industries (based on the SEC's 2-digit classification) for 403 months, King attempted to determine whether three effects-market, andustry, and individual firm--"account for the complex interrelationships of the ensemble of security price changes" (p. 143).

His results indicated that for the entire period (June, 1927 through December, 1960) the market effect accounted for about 50 percent of the variation in stock prices and industry about 10 percent; while for the period August, 1952 through December, 1960 the market effect dropped to 31 percent and the industry effect was 11 percent.

More recently Meyers (1973) conducted a study to determine if King's findings, in regard to the importance of the industry effect, were overstated because of (1) his sample choice and/or (2) his methodology.

Using two samples of sixty firms each (one sample was composed of the same six industries King used, while the other was a sample of five firms in each of twelve industries) and using different methods (the most important of which were)
. . . the use of true principal components analysis in lieu of the Guttman-Harris and centroid techniques and the omission of the multiple factor analysis of industry factors, which has been the primary basis for exaggeration of the strength of industry factors, (p. 696)

Meyers concluded,
Whale the results of the analyses described in this report generally support King's observations that industry relationships are an important source of interdependence among securıties in samples in which each industry is represented by at least five companies, there is also substantial evidence that such factors are considerably less important than was suggested by King. (p. 704)

The importance of these studies wall be discussed further in section 2.3 in which the market model is discussed.

2.3 The Market Mode]

In the 1950's Harry Markowitz published what became the foundation (based on the pioneering work of Irving Fisher in the 1930's) of modern portfolio theory.

The major contributions that Markowitz made to portfolio theory were the incorporation of (1) the raskiness of an asset, and (2) the additional return demanded for investing in a riskier asset (Ball and Brown, 1969). Uncertainty about future returns from an investment is
measured by the variance or standard deviation of the expected returns about its expected value. If investors are rational, they will prefer a higher average return to a lower average return, other things being equal, and if they are risk averse they will prefer less variance to more varıance of future returns for a given expected return.

In Illustration II-1, portfolio B would be preferable to portfolio A because at a given level of expected return (r_{2}) portfolio B has less variance (v_{1} versus v_{2}). Portfolio B would also be preferable to portfolio C because at a glven level of risk $\left(v_{1}\right)$ portfolio B has a greater expected return (r_{2} versus r_{1}) than portfolio C.

Risk (variance or standard deviation)

Illustration 1
PORTFOLIO SELECTION GIVEN RISK AND EXPECTED RETURN

What is important in regard to an investment in a single security is its contribution to the expected return and variance of the total portfolio. This can be shown below for a two-security case:

$$
\begin{equation*}
E\left(\tilde{R}_{p}\right)=x \cdot E\left(\tilde{R}_{1}\right)+(1-x) \cdot E\left(\tilde{R}_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{v}{R_{p}}=x^{2} \cdot \stackrel{v}{R_{1}}+(1-x)^{2} \cdot \stackrel{v}{R_{2}}+2 \cdot x \cdot(1-x) \cdot \operatorname{cov}\left(R_{1}, R_{2}\right) \tag{2}
\end{equation*}
$$

where:
$\mathrm{E}=$ expectation operator,
$\tilde{R}_{\mathrm{p}}=$ return for portfolio (tilde denotes random variable),
$x=$ proportion of wealth invested in security 1 ,
$\tilde{R}_{1}, \tilde{R}_{2}=$ return on securities 1 and 2 ,
v
$R_{p}=$ variance of the portfolio return,
$\begin{aligned} & \mathrm{v} \\ & \left.\mathrm{R}_{1}\right) \mathrm{R}_{2}\end{aligned}=$ variance of the returns of securities 1 and 2.

The covarıance between the return on the two securities is:
$\operatorname{cov}\left(\tilde{R}_{1}, \tilde{R}_{2}\right)=\rho_{12} \cdot \sigma\left(\tilde{R}_{1}\right) \cdot \sigma\left(\tilde{R}_{2}\right)$,
so the standard deviation for the portfolio may be expressed:

$$
\begin{equation*}
\sigma\left(\tilde{R}_{p}\right)=\tilde{R}_{p}=x^{2} \cdot \mathrm{~K}_{1}+(1-x) \cdot{ }^{2 v} \mathrm{R}_{2}+2 \cdot x \cdot(x-1) \cdot \rho_{12} \cdot \sigma\left(\tilde{R}_{1}\right) \cdot \sigma\left(\tilde{R}_{2}\right) \tag{3}
\end{equation*}
$$

As is seen in (2), as a portfolio grows in size, the contribution that any one security makes to the varlance of the portfolio becomes less important (the contribution of securaty 1 to the varıance of the portfolio is the proportion of wealth invested in security 1 , squared, times the variance of security l's return). For a portfolio consisting of a large number of securities, the individual security would be a relatively unimportant contributor to total portfolio risk, and might safely be Ignored. In a portfolio of 17 securities, approximately 90% of the individual security risk has been eliminated, assuming equal wealth investment in each security and ρ equals .5 (Mao, 1970, p. 1112).

Thus, portfolio theory suggests that risk-averse investors should concentrate on each security's contribution to total portfolio uncertainty rather than on each securaty's uncertannty. A security with a large average covariance, regardless of its variance, adds more to the uncertainty of the returns of the portfolio and is therefore more risky.

For a glven set of securities, the feasible aet of portfolios consists of all single-security portfolios and all possible combinations of them. Those portfolios which are efficient (offer maximum return for a given level of risk and mınımum risk for a given level of return) will form the upper border of the feasible set which is called the efficient frontier. See Illustration II-2.

Illustration 2
THE FEASIBLE SET AND EFFICIENT FRONTIER

Since it is also possible to invest in riskless assets- R_{f} (such as short-term government securities), a line can be drawn from the appropriate intersection on the vertical axis to a point tangent to the efficient frontier as is shown in Illustration II-3.

Portfolios can be constructed, then, based on a combination of risk-free assets and risky assets along line $R_{f} M$, and assuming that an investor can borrow at the risk-free rate, portfolios can be constructed which lie along line $M D$.

Illustration 3
THE FEASIBLE SET AND EFFICIENT FRONTIER
WITH RISKLESS ASSETS

The straight line $\mathrm{R}_{\mathrm{f}} \mathrm{M}$ D is what Sharpe called the "capital market Line" (Sharpe, 1964, p. 425).

The capital market line can be mathematically written as

$$
E\left(R_{p}\right)=R_{f}+\left[\left(E\left(R_{m}\right)-R_{f}\right) / \sigma\left(R_{m}\right)\right] \sigma\left(R_{p}\right)
$$

where symbols are as given before and:

$$
\begin{aligned}
E\left(R_{m}\right)= & \text { expected return on the market portfolio } \\
& \text { (portfolio at point } M \text {), } \\
\sigma\left(R_{m}\right)= & \text { risk of the market portfolio. }
\end{aligned}
$$

Portfolıo analysis using Markowitz's methodology requires a large amount of data: for each security one must know its expected return, its variance (or standard devıation), and its covarıance with each other security. If an efficient set were to be constructed from 100 securities, one would need 100 statistics for expected return, 100 variances, and 4,950 covariances (Shetrpe, 1963, p. 282).

Sharpe suggested that, since almost all securities are significantly correlated with the market as a whole, a setisfactory simplıfication would be to utilize information on the relationship of each
security to the market rather than the covarance of each security with each other security.

Hence:

$$
R_{i}=A_{i}+B_{i} \cdot I+C_{i} \quad(\text { Sharpe, 1963, p. 281) }
$$

where:
$R_{i}=$ return on security i,
$A_{i}, B_{i}=$ parameters,
$C_{i}=$ random variable with expected value of zero,
I = level of some index ". . . thought to be the most important single influence on the return of securzties."

Using this model, only 302 estimates need be made for 100 securities.
Sharpe later wrote an article in which he discussed the relationship between portfolio theory and the determination of financial asset prices (Sharpe, 1964). The model he presented states that the expected return on an asset is related to the riskless rate of return and the return on the market portfolio:

$$
E\left(R_{i}\right)=R_{f}+b_{1} \cdot\left(E\left(R_{m}\right)-R_{f}\right)
$$

where all symbols are as defined before and
$b_{i}=a$ measure of the sensitivity of R_{i} to movements in R_{m}.
While the above equation deals with the expected return on an asset, the relationshıp between the actual risk premium on an asset (its actual return less the riskless rate of return) and the return on the market 1 s represented by a linear equation directly derived from the equation above:

$$
\begin{gathered}
R_{i}-R_{f}=a_{1}+b_{i} \cdot\left(R_{n}-R_{f}\right)+c_{i} \text { (Lorie and Hamilton, 1973, } \\
\text { p. 201) }
\end{gathered}
$$

This model is based upon several simplifying assumptions (Sharpe, 1970):

I. Investor Characteristics:

A. All are one period utility maximizers,
B. All have the same one-period horizon,
C. All are risk averse (exhibit diminushing marginal utility),
D. All are rational, investing in efficient portfolıos,
E. A11 base judgments on expected mean and variance of returns,
F. All hold homogeneous, $1 . e .$, identical, expectations of distributions of future returns,
II. Market Characterıstics:
A. All investors can borrow or lend freely at the riskless rate,
B. There are no transaction costs,
C. All assets are perfectly divisible,
D. The market is in equilibrium.

A great deal of research has been conducted on this model to see how closely it conforms to reality and to see how critical the assumptions are. Rather than review each study and comment on them, the author suggests the interested reader read Jensen (1972), Downes and Dyckman (1973), or Beaver (1972). These studies, in general, indicate that, while some assumptions are more critucal than others, the model is a fairly good representation of reality.

2.4 Accounting Implications of the Market Model

Ideally, since the market model can abstract market and industry effects from price changes, it can be used to study the residual (C) term which is referred to as the individual firm effect. By examıning the residual movements when information becomes available to investors, one can evaluate how $\operatorname{Investors~(as~a~whole)~"react"~to~the~information.~}$ If news is recelved which would increase investors' expectations of the diccounted cash flows to be received from a firm (other things such as the risk associated with the firm's security and the risk and returns of all other securities remanning the same), we would expect the stock's price to rise. If the reverse were true (information were received that would cause n nvestors to lower themr expectations), we would expect the security's price to decline.

Beaver (1968) found, using the market model and examining the absolute value of the residuals, that ". . . there is abnormal price activity when earnings reports are announced" supporting ". . . the contention that earnings reports possess information content" (p. 82). Ball and Brown (1968) found that investors are able to "antıcipate" favorable or unfavorable earnings announcements.

This study was interested in finding out if investors "react" (in reality a more precise wording should be "act as if they react," but the shorter terminology will be used throughout this study) to the net income figure reported by firms or if they react to incone before extraordinary 1 tems.

No attempt was made to identify those extraordinary items which did convey information that there would, in fact, be a decrease or increase in future cash flows. Hence no conclusions may be drawn regarding whether Investors reacted "properly" or not. All that may be said is that they appear to use one number more than another.

2.5 Possible Motivation in Regard to Extraordunary Item Presentation

Cumming's research (1973) was an effort to identify instances where apparently similar unusual events were treated differently in published annual income statements and to empiracally evaluate possible explanations for those differang treatments.

Cumming examined the 1970 publıshed annual reports of 754 corporations to find instances where apparently similar events ${ }^{1}$ were segregated in the extraordinary item section of the income statement by some corporations and reflected in the income before extraordnary items by others.

Cumming Investigated several hypotheses regarding the reporting of extraordinary items in annual financial statements. The hypotheses that are of interest to this research are those concerned with whether firms treat apparently similar unusual events differently because: (1) they seek to maintain a trend established by income before extraordinary items, and/or (2) they try to maximize or smooth net income before extraordinary items.

[^1]Both of these hypotheses are relevant to this study because they infer that the management of a firm may be interested in presenting the figures that they believe wall be most beneficial to the firm by manipulatıng $2 n c o m e$ before extraordınary items. Presumably, one group of people that they would try to "impress" would be the investors. Whether or not investors are subject to such "suasions" is the concern of this research.

Cumming classified the unusual events he found into the categories found in Table 1 based upon responses to a questionnaire sent to a sample of partners in "Big 8" CPA firms. He then calculated a "target level of ıncome before extraordinary items" which he calculated as the earnings

TABLE 1
CUMMING'S CLASSIFICAIION OF EVENTS

projected from the firms' earnings trend. ${ }^{2}$ The target figure was compared with income before extraordinary items recomputed assuming
$2_{\text {Earnings trend was determined for each firm by seeing which }}$ of the following five curves manamized the sum of the squared residuals: $Y=a+b X \quad Y=1 /(a+b X) \quad Y=a X^{b}$ $Y=A+b \log X \quad Y=a b^{X}$
where: Y=reported earnings before extraordinary items, X=years 1960 through 1969.
that the event has been classified in the alternative section of the income statement.

He then inferred the following managerial behavior based on their comparison: (1) management exhibited maximizing behavior if inclusion of the event increased income before extraordinary items, and (2) management exhibited smoothing behavior if their classification decision reduced the difference between income before extraordinary items and target income before extraordinary items.

He obtained significant results at the .05 level for the "other in nature" events whose materiality had been classified as borderline (group D in Table 1) for the hypothesis that management smooths income, but not for the maximization hypothesis.

White (1970) attempted to determine if a firm's management selected alternative accounting methods in an effort to smooth income. His data was drawn from four samples:
(1) ten firms randomly selected from the chemical industry,
(2) ten firms randomly selected from the building materials industry,
(3) the ten firms exhibiting the highest degree of smoothness from the chemical industry,
(4) the ten farms exhibiting the highest degree of smoothness from the building materials industry. ${ }^{3}$
${ }^{3}$ Degree of smoothness for samples 3 and 4 was based on the highest R^{2} from either Inear or logarithmic least squares regression of reported EPS, adjusted for splits, etc., over the ten-year period 1957-1966.

White compared the net marginal earnings per share effect of the discretionary accounting decisions in the year of effect with the difference between actual earnings per share and a normal or target earnings per share (calculated as the projection of the better of the least squares linear or the logarithmic regression line and also as being equal to the prior year's earnings).

White rejected his null hypothesis (a non smoothing hypothesis) at the .025 level of sugnifucance for the building materials random sample (group 2 above) under the least squares criterjon and the chemicals smoothing sample (group 3) under the prior year's earnings per share criterion.

Since White's study was conducted before APB Opinion No. 9 became effective, his data included firms that had greater freedom with respect to either reporting extraorinnary items in the income statement or statement of retanned earnings. From that respect his results reported here are somewhat dated, but there still is the element of the timing of the reporting of extraordinary items that is a relevant issue; for that reason it is mentioned that for the random sample of building materıal firms (group 2), extraordınary items were predominately involved in smooth decision years under the least squares criterion.

In another study on potential income smoothing, Dascher and Malcom (1970) studied the effect on earnings trends of four accounting variables: (1) extraordınary charges and credits, (2) pension costs, (3) research and development costs, and (4) dividends from unconsolidated subsidiaries reported by the parent using the cost method.

Their data was from 52 firms in the chemical and chemical preparations industry and was analyzed for two tine periods, eleven years (1956-1966) and six years (1961-1966). They compared a measure of the smoothness of reported income adjusted to take out the effect (net of income taxes) of the four variables mentioned above. Their results were ". . . consistent with the hypothesis that deliberate smoothing practices have been employed [wath respect to these four variables in total]. The results are more conclusive for observations of the six year period than for the eleven year period" (p. 258).

Although the authors do not give details as to the importance of each of the variables studied and although theur research was also pre-Opınion No. 9, this study again $211 u s t r a t e s$ that management may recognıze and utilize the fact that the taming of reporting extraordinary items can influence earnings in such a way as to present a smoother earnings trend.

2.6 Research on Scock Market Prices and Extraordınary Items

Benston (1967) Investigated the question of what accounting
data investors find useful by computing regressions of several alternative data (in rate of change form) with the rate of change of the market price of the security of several firms.

Benston began wilh the model:

$$
\begin{equation*}
P_{j t}-P_{j t-1}=\Delta P_{j t}=f\left(A_{j t}, D_{j t}, \Delta D_{j t}, \Delta M_{t}, I_{k t}, Y_{j t}, U_{j t}\right) \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
P_{j t}= & \text { stock price of common shares of firm } j \text { in period } t, \\
A_{j t}= & \text { published accounting data of firm } j \text { in period } t \text { when } \\
& \text { the data becomes "known," } \\
D_{j t}= & \text { distribution of assets or claims to assets to stock- } \\
& \text { holders of firm } J, \\
\Delta D_{j t}= & \text { changes in dividends of firm } j \text { in period } t \text { that } \\
& \text { affect investors' expectations, } \\
\Delta M_{t}= & \text { changes in general market conditions in perıod } t, \\
I_{k t}= & \text { information that affects market valuatıon of all } \\
& \text { firms in industry k that becomes known in period } t, \\
Y_{j t}= & \text { economic income generated by the assets of firm } j \\
& \text { in period } t, \text { that changes the present value of the } \\
& \text { firm, } \\
U_{J t}= & \text { other information about firm } j \text { that becomes "known" } \\
& \text { in period } t .
\end{aligned}
$$

To avoid possible domination of h1s regression by large firms (he states ". . . corporations wath large absolute price changes are likely to have several changes in accounting data" (p. 4)), he deflated several of the variables gaven in (4) before calculating the regression:

$$
\begin{aligned}
& \Delta P_{j t} \text { was operationalized as } \\
& \qquad P R_{j t}=\log _{e}\left[\left(P_{j t}+D_{j t}\right) /\left(P_{j t-1}+D_{j t-1}\right)\right]
\end{aligned}
$$

(the denominator was adjusted for capital changes in period t), which is the rate of return (continuously compounded) provided by security j held during time t.
$A_{j t}$ was operationalized as $A R_{j t}=\log _{e}\left(A_{j t} / A_{j t-1}\right)$; five alternative constructs of accounting data were used in the regression (data was taken from the Compustat tape):

1. net sales (Compustat item 12),
2. net income before deduction of depreciation and amortızation, $1 n c o m e$ taxes and nonrecurring items (Compustat 1tem 13),
3. net income before deduction or addation of nonrecurring expense or income (Compustat item 18 less jtem 17),
4. net income before deduction or addıtion of non-recurring expense or income that is stated in the published reports as being net of tax (Compustat item 18),
5. net income after all deductions and additions (Compustat item 18 less item 48).
$\Delta D_{j t}$ was operationalızed as $D R_{j t}=\log _{e}\left(\Delta D_{j t}\right)$.
Further, the industry effect, $I_{k t}$, was accounted for by using dummy variables (24 industry classifications were used, based on the first two digits of the Compustat industry code).
$Y_{j t}$ was disregarded because Benston felt it would either be relatively small (he used a time period of one month) and/or it would be accounted for by the $A R_{j t}$ variable.

Using the market model to abstract the market effect on the price change of a firm's stock:

$$
\log _{e} R_{j t}=a_{j}+\beta_{j} \cdot \log _{e} L_{t}+p_{j t}^{a}
$$

where:

$$
\begin{aligned}
L_{t}= & \text { Fisher's Link Relative for period } t \text { (a surrogate for } \Delta M_{t} \\
& \text { in (4)), } \\
\alpha_{j}, \beta_{j}= & \text { individualistic parameters, } \\
p_{j t}^{a}= & \text { disturbance term which estimates the rate of change of } \\
& \text { security prices adjusted for the average effect of changes } \\
& \text { in general market condıtion during period } t .
\end{aligned}
$$

$$
P_{\jmath t}^{a}=f\left(A R_{j t}, \Delta D_{j t}, I_{k t}, u_{\jmath t}\right)
$$

where all symbols are natural logs, except $I_{k t}$.
To measure the effect on $\mathrm{p}_{\mathrm{Jt}}^{\mathrm{a}}$ of the difference between Investor expectations and reported accounting figures, Benston had to determine what investors expected. He therefore determined AR* (expected accounting data in period t) as being:
(1) $A R_{t}^{*}=A R_{t-1}$;
(2) $A R_{t}^{*}=\sum_{i=1}^{3}(1 / 3) \cdot A R_{t-1}$, (past 3 -year average);
(3) $A R_{t}^{*}=\sum_{1=1}^{5}(1 / 5) \cdot A R_{t-1}$, (past 5-year average);
(4) $A R_{t}^{*}-b_{0} \cdot \sum_{i=1}^{\infty} w^{i} \cdot A R_{t-1}$, (declining dustributed lags, the most recent rates of change ane weighted most heavily with the weights (b's) declining geometrıcally), where:

$$
\begin{aligned}
\mathrm{b}_{0} & =\text { the general coefficient, } \\
\mathrm{w} & =\text { the weights, } 0 \leq W<1, \text { and } \sum_{1=1}^{\infty} w^{i}=1, \\
i & =1, \ldots, \infty \text { (time periods assumed to run to } \infty \text {). }
\end{aligned}
$$

The regression then became:

$$
\begin{equation*}
p_{j t}^{a}=a_{J}+a_{2 J}\left(A R_{j t}-A R_{j t}^{*}\right)+a_{4 J} \cdot D R_{t}+a_{5} I_{j}+\ldots a_{28} I_{28}+u_{t} \tag{5}
\end{equation*}
$$

Using 483 firms for the year $t=1964$, Benston's results indicated that there was a high correlation between net income before extraordinary items and final net income (all correlatıons were between . 72 and . 81) for the 4 models tested. For this reason Benston stated that $1 t$ appears

> - . that the companıes sampled experienced sımılar hıgh and low rates of change in the three constructs of net income [constructs 3, 4, and 5]. Therefore it is unlikely that much difference between these alternative constructs can be found . . ., although such a difference maght exlst in another, more extreme sample of companies. (pp. 12-13)

Since the variables are measured as natural logarithms, the coefficients of the variables in equation (5) are estimates of the elasticities of the accounting data relative (rate of change) with respect to the rate of change in stock price (i.e., if a coefficient, or elasticity, for a particular $A R$ is .02 , this would mean that a 100% change in the rate of change of the accounting variable would be associated with a 2% change in the monthly rate of change of the stock price).

Benston's results indicated that the net sales construct is "used more" by investors than were the other constructs tested.

With regard to the two constructs relevant to this study, net income and income before extraordinary items (net of taxes), he found that the coefficients were so similar that one could not conclude
that investors use one rather than another. In fact this was true of all four net income constructs.

His results regarding net income and income before extraordinary items, are not surprısing since his data was gathered prior to the issuance of $A P B$ Opanion No. 9, when the meaning of the extraordinary item classification was unclear and was not utilized consistently across all fırms (see Bernstein, 1967).

Bal1 and Brown (1968) correlated the sign of the unexpected earnings of a firm (the difference between a firm's actual earnings for a year and the earnings predicted for that year using a regression based on the overall market earnings) and that portion of the firm's stock price change that could not be explained by market fluctuations. They found that using income before nonrecurring items was not ". . . as successful in predicting the signs of the stock return residuals as net income. . . ." (p. 172-173)

The authors (relying on their previous research findings that about one half of the variability of a firm's earnings per share can be associated with economy-wide effects (Brown and Ball, 1967) calculated the coefficients $\hat{a}_{1 j t}$ and $\hat{a}_{2 j t}$ using a linear regression:

$$
\Delta \hat{I}_{j, t-r}=\hat{a}_{1 j t}+\hat{a}_{2 j t} \cdot M_{j, t-r}+\hat{u}_{j, t-2}, \quad r=1,2, \ldots, t-1
$$

where:

$$
\begin{aligned}
\Delta \hat{I}_{j, t-r}= & \text { change in firm } j \text { 's income in period } t-r \text { (calculated } \\
& \text { for both net income and earnings per share), }
\end{aligned}
$$

$a_{1 j t}, a_{2 j t}=$ coefficients from the 1inear regression, $M_{j, t-r}=$ change in the average income of all firms on the New York Stock Exchange.

The authors also used a nalve model in which $I_{j t}=I_{j t-1}$.
The results for this model were reported only for EPS.
Thus, the expected change in income for firm j in period t is defined as:

$$
\Delta I_{J t}=\hat{a}_{1 J t}+\hat{a}_{2 \jmath t} \cdot M_{\jmath t} .
$$

So the unexpected income change, or forecast error is actual income change ($\Delta I_{J t}$) less the expected income change.

$$
u_{j t}=\Delta I_{j t}-\Delta I_{j t}
$$

Using the following equation to determine market stock price movement:

$$
P R_{j m}-1=\hat{b}_{1 j}+\hat{b}_{2 j} \cdot\left(L_{m}-1\right)+\hat{v}_{j m}
$$

where:
$P R_{j m}=$ the price relative for firm j in month m, calculated as being the closing price in month m plus dividends (in the month the stock went ex-dividend) divided by the opening prace; $\mathrm{PR}_{\mathrm{Jm}}-1$ is thus the discrete monthly rate of return on stock J in month m),
$b_{1 j}, b_{2 j}=$ regression coefficients,
$L_{m}=$ link relative developed by Fisher; $L_{m}-1$ is an estimate of the market's monthly rate of return,
$v_{j m}=$ stock return residual for firm j in month m,

Using reported income for 261 firms for the years 1957 through 1965, Ball and Brown concluded that their results ". . . demonstrated that the information contained in the annual income number is useful in that if a true ancome differs from expected income, the market has reacted in the same direction" (pp. 169-170). They also state that ". . . it is most unlikely that there is no relationship between the sign of the income forecast error and the sign of the race of return residual in most of the months up to the annual report announcement" (p. 170). While the authors state that they computed results for the regression model using income defined as net income before nonrecurring items, they presented no data on the results.

2.7 Implications of Past Research

The preceding two sections have illustrated two points that provide a basis for this study. Section 2.5 presented research findings from three studies indicating that firms try to smooth reported earnings (two of these studies, Cumming, and Dasher and Malcolm, were directly concerned with firms reporting extraordinary items).

Section 2.6 presented research dealing with the relationship between security prices and reported earnings. Both studies indicated that there was only a slight difference between the association of net incomes and income before extraordinary items with security prices. By using a methodology different than was used in the studies discussed in Section 2.6, this study was undertaken to find whether investors are influenced by reported extraordanary items in the income statement.

CHAP'TER III

RESEARCH METHODOLOGY

3.1 Overview of Methodology

As indicated $1 n$ Chapter I, this research was interested in determining if investors appear to react to net income or income before extraordinary items in the income statement. The research was based on Ball and Brown's (1968) findings that the residual of the return on a firm's security moves in the same direction as does the firm's unexpected earnings. If a firm reports higher earnangs than "expected," its security's returns are greater than those of the security market in general. The major idea of this research was to investigate those cases where unexpected net income is positive while unexpected income before extraordinary items is negative and viceversa. By examining the sign of the firm's security's return relative to the market return, one could infer which figure investors appear to react to.

The design of the study may be broken down into three major steps summarized below.

Step 1: Selection of firms included in the study. The population of firms on the New York Stock Exchange listed from January 1, 1967, through December 31, 1972, was divided into two groups--those reporting extraordinary items during this period and those not reporting extraordinary items during this period. The annual financial statements of those reporting extraordinary items were examined to determine it the firm
satisfied the criteria discussed in Section 3.2 and to gather necessary data. For each firm reporting an extraordinary item, a "control" firm was randomly selected from the group of firms not reporting an extraordinary item.

Step 2: Portfolio Construction. For each firm selected in Step 1, expected earnings were calculated using several earnings expectations models (discussed in Section 3.3). Actual earnings were then compared to expected earnings and the firms were classified into portfolios based on the signs of their unexpected net income and unexpected income before extraordinary items.

Step 3: Analysis of Portfolio Returns. An Abnormal Performance. Index was calculated for each portfolio to see if there were abnormal returns to be made by holding any of the portfolios.

3.2 Firm Selection and Data Sources

A11 firms 1isted on the NYSE that appear on Standard and Poor's Annual Industrial Compustat tape formed the population from which the firms for this study were selected.

The Compustat tape was scanned to identify NYSE firms that reported extraordinary items during the years 1967 through 1972. The annual reports of the firms identified were examined to determine if the firms met these criteria:
(1) the firm must have reported no extraordinary item for three years prior to and two years after the year in which the extraordinary item was reported,
(2) the firm must not have restated past earnings or reported an "adjustment" to retained earnings in the year the extraordinary item was reported,
(3) the net effect of two or more extraordinary items was not zero.

In addition, Standard and Poor's Corporation Records was examined for each firm to see whether the following criterla were satisfied:
(4) the firm must have been listed on the NYSE for at least two years prior to and one year after the extraordinary item was reported.
(5) there was not a change in year-end for the year the extraordinary item was reported.

Finally, the Wall Street Journal Index was examined to verify that there was:
(6) no reported change in the amount of dividend paid durzng the same week as the earnings were announced for the year that the extraordinary item was reported.

Since this research was interested in determining the effect of an extraordinary item on the market aggregate expectations, rather than the effect of a series of extraordinary items, the first criterion was included to prevent confounding of the results in this respect.

The second criterion insured that the price movements exhlbited by a firm's securities in the year the extraordinary items were reported were not due to a change in expectations because of a restatement of prior years' earnings (usually done in conjunction with a business combination) or a correction of prior years' earnıngs.

The third criterion was needed to eliminate firms for which both income figures were the same.

The fourth criterion insured that enough price data was avallable to have at least 105 price relatives for use in the regression equation.

The fifth criterion was needed because the forecast models included In the study forecast a full year's earnings.

The sixth criterion prevented any confounding that could result because of the impact of this extraneous (to this study) information.

The financial statements of the 98 firms (listed in Appendix B) that reported extraordinary items and meet the criteria above were examined to obtain the information required by the study (see Data Gathering Sheet, Appendix A). Appendıx C lists the extraordınary item firms used in this study along with their two-digit SIC code, earnings per share (adjusted for stock splits and dividends) for the three years prior to the year the extraordinary item was reported, earnings per share (EPS) for the year the extraordınary 1 tem was reported, the extraordinary items (net) per share, and the year in which the extraordinary item was reported. Appendix D sumnarizes the coded type of extraordinary items reported by year. Appendix E explains the coding for the extraordinary items.

The date the public received the income figure (for the year the extraordanary item was reported) was assumed to be the date the income figure was published in the Midwest edition of the Wall Street Journal. That dace was found by shecking the Wall Street Journal Index and verified by examining the citec day's paper.

Once the extraordinary item firm group was determined, another group of firms was selected in the following manner: for each firm in
the extraordinary item group in a given Standard and Poor's two-digat industry classification, one firm was randomly selected from among the firms that did not report an extraordinary item during the study period. The purpose for selecting the second group in this manner was to partially control for industry effects of changes in stock market prices and also to provide a "control" group with which to compare the stock price movements of the extraordinary item group of firms. Firms selected for this group were subject to criterıa (2), (4), (5), and (6) discussed earlier. In cases where a match could not be made based on the firm's 2-digit code, a firm was randomly selected from those firms not reporting an extraordinary item based on the first digit of the industry code. When even this did not generate a firm meeting the criteria, a firm was randomly selected without regard to industry code. There were five firms that were matched by only the first digit of the industry code and five cases where the control firm was selected without regard to the industry code. Appendix F lists the firms in the control group. Appendix G lists the two-digit SIC code, EPS (adjusted for stock splits and dividends) for the three years prior to the year of interest, EPS for the year of interest, and the year of interest. Appendix H contains an explanation of each two-digit SIC code.

Price data was gathered by hand from Standard and Poor's Daily Stock Price Record-New York Stock Exchange. Dividend data was gathered from Standard and Poor's Dividerd Record. The securities' price and dividend data were used to calculate the price relatives necessary for use with the Sharpe model by a computer program written for that purpose using the equation:

$$
R_{i w}=\frac{S_{i, w} \cdot\left(P_{i, w}+D_{i w}\right)}{S_{i, w-1} \cdot P_{i, w-1}}
$$

where:

$$
\begin{aligned}
& \mathrm{R}_{i, \mathrm{w}}= \text { the rate of return on security } i \text { between Friday } \\
& 2-1 \text { and Friday } w \text { (designated as week } w, 1,2 \\
& S_{i, w-1}, S_{1, w}= \text { adjustment factors for stock splits and stock } \\
& \text { dividends for firm } 1 ; \text { if there were a } 2 \text { for } 1 \\
& \text { stock split in week } w, \text { then } S_{i, w-1}=1 \text { and } \\
& S_{i, w}=2 . \\
& P_{i, w-1}, P_{i, w}= \text { price of securıty } i \text { on Frıdays } w-1 \text { and } w, \\
&= \text { the amount of cash divıdend on security } i \text {, where } \\
& D_{i, w} \quad \text { week } w \text { is the week the security sold ex-dividend. }
\end{aligned}
$$

3.3 Income Expectation Models

Ideally, when forecasting, one should choose the forecast that provides the greatest uncertannty reduction (provided that all forecasts become available at the same time) (Theil, 1966, p. 2). Given the limited amount of data collected on each firm (the income numbers for four years including the year of interest) for this study, it would be difficult to choose a "best" model for each firm. Therefore, the four models
${ }^{1}$ In cases where there was no trading of a security on a Friday, the bid price was used. If the exthange was closed on a Friday, then Thursday's closing price was used. (See the discussion in Section 3.6.)
${ }^{2}$ In cases where the stock sold ex-cash-dividend the same week in which there was a stock split or stock dividend and the cash dividend was applicable to the old number of shares outstanding $D_{1 w}$ was removed from the parentheses in the equation above before $R_{i, w}$ was calculated.
discussed below were used. (See Appendix I for a discussion of why three other expectation models used in other studies were rejected.)

Model I: $E\left(X_{t}\right)=X_{t-1}+\left(\frac{1}{2}\right) \sum_{j=1}^{2}\left(X_{t-j}-X_{t-j-1}\right)$,

Mode1 2: $E\left(X_{t}\right)=X_{t-1}-\left(\frac{1}{2}\right) \sum_{J=1}^{2}\left(X_{t-j}-X_{t-j-1}\right)$,

Mode1 3: $E\left(X_{t}\right)=X_{t-1}+\left[X_{t-1} / 2\right]\left[\sum_{J=1}^{2}\left(X_{t-j}-X_{t-j-1}\right) /\left(X_{t-j-1}\right]\right.$,

Model 4: $E\left(X_{t}\right)=X_{t-1}$.

Where:
$E\left(X_{t}\right)=$ the expected value of the earnings variable (primary earnings per share) in period t,
$X_{t}=$ the actual value of the earnings variable in period t,
Model 1 defines expected earnings as being the earnings of the prior year plus the average dollar amount of change in earnings between each pair of the three yeats prior to the year of interest. It assumes that a firm's income changes by a constant dollar amount over time. Beaver and Dukes used this model (1972 and 1973).

Model 2 defines expected earnings as the earnings of the prior year less the average dollar amount of change in earnings between each pair of the three years prior to the year of interest. It assumes that earnings are described by a moving average process. This model was also used by Beaver and Dukes (1972 and 1973).

Model 3 predicts earnings to be the earnings of the prior year plus the average rate of change between each pair of the three years prior to the year of interest. It assumes that a firm's earnings increase at a constant rate rather than a constant amount.

Model 4 defines expected earnings to be the same as the prior year's earnings. Beaver and Dukes (1972 and 1973) also used this model.

Models 1 and 3 describe earnings as being the result of a submartingale process. ${ }^{3}$ In a study by Ball and Watts (1972, p. 688) they conclude that ". . . measured accounting income is a submartingale or some very similar process."

Model 2 was included because of past research findings indicating that this model may approximate the earnings process. Beaver (1970, p. 86) states that, for some of his measures of earnings, mean reversion was observed.

Model 4 was included because of the research that indicates earnings may follow a random walk or martingale ${ }^{4}$ (Brealey, 1969, pp. 88-103). Further, as pointed out by Ball and Watts (1972, p. 666), Ball and Brown (1969) found that this model led to less exror in measurement of the expectation of income than did a model based on an average of past incomes.
${ }^{3}$ If $Y_{1}, Y_{2} \ldots$ are random variables and E is an expectation operator, then the sequence Y_{t} is a submartingale if:

$$
E\left(Y_{t+1} \mid Y_{o}, \ldots Y_{t}\right) \geq Y_{t} \text { for all } t
$$

${ }^{4}$ A martingale is a specific case of a submartingale; the sequence Y_{t} is a martingale if

$$
E\left(Y_{t+1} \mid Y_{0}, \ldots Y_{t}\right)=Y_{t} \text { for all } t
$$

3.4 Determination of Forecast Error

Forecast error (e) is defined as the difference between a firm's expected earnings, $E\left(X_{t}\right)$, from each of the four models and the firm's published actual net income, X_{t}. Forecast error was considered the unexpected earnings that a firm exhibited for the year being studied. Mathematically, e is expressed:

$$
e_{i, t, f}=E\left(X_{i, t, f}\right)-X_{i, t}
$$

where:

$$
\begin{aligned}
e_{i, t, f}= & \text { unexpected net income per share for firm in in } \\
& \text { period } t \text { given the forecast model } f(f=1,2,3,4) . \\
E\left(X_{i, t, f}\right)= & \text { expected net income per share for firm in period } \\
& t \text { using forecast model } f, \\
X_{i, t}= & \text { actual net income per share for firm in in period } t .
\end{aligned}
$$

As in the research by Ball and Brown (1968), this forecast erzor will be assumed to be new information conveyed by the earnings per share figure.

A second forecast error, e^{\prime}, is defined as the unexpected earnings per share that would have been announced by a firm had no extraordinary item been reported. It was calculated as:

$$
e_{i, t, f}^{\prime}=e_{i, t, f}-E I_{i, t}
$$

where:

$$
\begin{aligned}
e_{i, t, f}^{\prime}= & \text { unexpected net income per share that would have been } \\
& \text { announced for firm } i \text { in period } t \text { given the forecast }
\end{aligned}
$$

model f if the finn had not reported an extraordinary item. (This is equivalent to unexpected income per share before extraordinary items),
$e_{i, t, f}=$ defined as above,
$E I_{1, t}=$ net extraordinary item per share reported by firm in period t.

3.5. Portfolio Construction

By comparing the sagns of e and e^{\prime}, one can determine if unexpected earnings are the results of normal, recurring operations or are the result of extraordinary items.

The firms studied were categorized in portfolios based on the sign of their unexpected earnings variables as follows:

TABLE 2
SIGNS OF UNEXPECTED EARNINGS VARIABLES BY PORTFOLIO

Unexpected Earnings Variable	Portfolio Number								
	1	2	3	4	5	6	7	8	9
e^{\prime}	$+$	-	*	-	$+$	*	0	\pm	*
e	$+$	$+$	+	-	-	-	\pm	0	0

The following intuative descriptions can be given to the portfolios.

Portfolio 1: Composed of firms that reported an extraordinary item whose earnings per share before and after extraordinary items was
greater than expected (hence, the extraordinary items were either a net gain of any amount or were a net loss of less than unexpected earnings).

Portfolio 2: Farms that reported an extraordinary item whose EPS was greater than expected solely because of the magnitude of the extraordinary gain; that is earnings per share before extraordinary item was less than expected earnings, but earnings per share after extraordınary item was greater than expected earnings.

Portfolio 3: Firms that did not report an extraordinary item whose EPS was greater than expected (part of the control group of firms).

Portfolio 4: Firms that reported an extraordinary item whose EPS before the extraordinary item and EPS after the extraordinary item were less than expected (hence, the extraordinary item was enther a loss of any amount or a gain of less than unexpected earnings).

Portfolio 5: Firms that reported an extraordinary 1 tem whose EPS was less than expected because of the magnitude of the extraordinary loss (earnings per share before extraordınary item was greater than expected earnings, but earnings per share after extraordinary item was less than expected earnings).

Portfolio 5: Firms that did not report an extraordinary item whose EPS was less than expected (part of the control group of firms).

The above six portfolios are those of interest to this research. However, three adiltional portfolios had to be constructed because in certain cases exther e or e^{\prime} turned out to be 0 . Portfolios 7, 8 and 9 were constructed for these cases. No analyses will be made of the latter three portfolios.

Appendix J contains the expected earnings by model and resulting portfolio classification for firms reporting extraordinary items. Appendix K contains the expected earnings by model and resulting portfolio classification for forms not reporting extraordinary items.

Table 3 summarizes the number of firms in each portfolio by earnings forecast model.

TABLE 3
NUMBER OF FIRMS IN EACH PORTFOLIO BY MODEL

	1	2	3	4	5	or 6	7	8	9	Total
$\left(\operatorname{sign} \text { of } e^{\prime}\right)^{a}$	+	-	*	-	+	*	0	\pm	*	
$\left(\right.$ sign of e) ${ }^{\text {b }}$	+	+	+	-	-	-	\pm	0	0	
MODEL										
1	28	6	54	57	6	43	1	0	1	196
2	8	8	57	42	9	41	0	1	0	196
3	22	10	45	57	8	53	0	1	0	196
4	33	8	59	51	6	39	0	0	0	196

${ }^{\text {a }}$ Sign of unexpected earnings before extraordinary items.
${ }^{\mathrm{b}}$ Sign of unexpected earnings (after extraordinary items). *No extraordinary items reported for firms in this portfolio.

Table 4 presents a further breakdown by model within portfolios one, two, four and five, showing the number of firms reporting extraordinary gains and losses.

TABLE 4
NUMBER OF FIRMS REPORTING NET EXTRAORDINARY GAINS OR LOSSES IN PORTFOLIOS ONE, TWO, FOUR AND FIVE

			Portfolio			
			1	2	4	5
(Sign of e^{\prime})(Sign of $e)$			+	-	-	+
			+	$+$	-	-
MODEL :	1	extraordinary gains	20	6	19	0
		extraordinary losses	8	0	38	6
	2	extraordinary gains	28	8	8	0
		extraordinary losses	10	0	34	9
	3	extraordinary gains	15	10	19	0
		extraordinary losses	7	0	38	8
	4	extraordinary gains	23	8	14	0
		extraordinary losses	10	0	37	6

Combining portfolios of similar signs of unexpected earnings before extraordinary items (e') reveals something of interest. Table 5 shows that, for all models, more firms reporting extraordinary items had negative unexpected earnings before extraordinary items than positive unexpected earnings before extraordinary items. For the control group more firms reported positive unexpected earnings than negative unexpected earnings in models 1,2 and 4. Model 3 apparently forecasted earnings at such a high level that for the control group more firms reported negative unexpected earnings before extraordinary items. This model has the largest number of firms in the minus e^{\prime} cell also. The final column in Table 5 is the chi-square statistic (corrected for continuity)
for a 2×2 classifacation of sign of unexpected earnıngs before extraordinary items (+ or -) and group the firm is in (EI or Control).

Tables 4 and 5 lend support to the belief that management may use timing of reporting extraordinary items to manipulate net income (e).

TABLE 5
COMBINATION OF PORTFOLIOS OF FIRMS WITH THE SAIE SIGN OF UNEXPECTED EARNINGS BEFORE EXTRAORDINARY ITEMS

PORTFOLIO

MODEL	$\begin{gathered} 1+5 \\ \text { Sign } \\ + \end{gathered}$	$\begin{gathered} 2+4 \\ \text { of } e^{7} \end{gathered}$	$\begin{gathered} 3 \\ \text { Sigi } \\ + \end{gathered}$	e^{6}	$7+8+9$	Total	Chi Square ${ }^{\text {a }}$ (2 $\times 2$ Classification)
1	34	63	54	43	2	196	7.51
2	47	50	57	41	1	196	1.48
3	30	67	45	53	1	196	4.01
4	39	59	59	39	0	196	9.00

${ }^{a_{C h i}}{ }^{2}$ significant at the . O1 level for L df $=6.64$. Chi ${ }^{2}$ significant at the .05 level for $1 \mathrm{df}=3.04$.

3.6 Measurement of Stock Market Response

As discussed in Chapter II, the measure of the stock market's response to the earnings announcement was calculated using Sharpe's market model (Sharpe, 1963):

$$
\ln R_{i t}=a_{i}+\beta_{i} \ln R_{m t}+u_{i t}
$$

where:

$$
\begin{aligned}
R_{i t}= & \text { the price relative of security in period } t, \\
\alpha_{i}, \beta_{i}= & \text { antercept and slope of the linear relationship between } \\
& R_{i t} \text { and } R_{m t},
\end{aligned}
$$

$R_{m t}=$ the value of a market index in perjod t (the market index used was Standard and Poor's Industrial Price Index), ${ }^{5}$
$u_{i t}=$ stochastic portion of individualistic component of $R_{i t}$.
The estimates of α_{i} and β_{i} were determined by regressing the natural logarithm of the weekly price relative for each security against the corresponding natural logarithm of the weekly Standard and Poor's 425 Industrial Price Index for the five-year period centered around the earnings announcement (with the exception of the 52 weeks prior to and 1 week after the announcement). In the cases of firms reporting extraordınary items in 1971 and 1972, the five-year perıod was shifted "forward" since the latest date was December 31, 1972.

Appendix L lists the α and β for firms reporting extraordinary items; Appendix M lists the α and β for the control firms.

To examine the effect of reporting an extraordinary item on the regression coefficients, an analysis was made of the coefficients for the periods before and after the earnings announcement. See Appendix N.

For purposes of this research a week is defined as the 7-day period from the close of trading Friday to the close of trading the next Friday. If a security was not traded on a Friday, then the bid price was used. If the exchange was closed on Friday, the closing price the previous day was used. If the securlty return spanned six or
${ }^{5}$ As Fisher points out (Fisher, 1966) the Standard and Poor Indexes are not the best indexes to use in the model. His "link relative," which is a welghted average of arithmetic and geometric means is somewhat superior. The S \& P Industrial Price Index was used in this study for expedience; to calculate a weekly index as described by Fisher would be extremely time consuming
eight days, then the market return spanned the same interval. While one study adjusted weekly returns "to an equivalent per annum return" (Kaplan and Roll, 1972, p. 233) this study did not adjust the data because the effect was expected to be very minimal for two reasons: (1) both R_{it} and $R_{m t}$ covered the same period and (2) the expected effect on the API (discussed in the following section) is mathematically close to zero because one component of the API is the product of the weekly returns.

Since the hypothesis under study is concerned with the unusual action of $u_{i t}$ during the period of earnings announcement, including the announcement period observations of R_{i} and R_{m} in the regression would violate the linear regression assumption that $E\left(u_{i t}\right)=0$. Therefore, data for the 52 weeks prior to and one week after the earnings announcement were omitted from the regression for each firm. An exclusion period of this long may seem extreme, but it still left 207 observations for the regression calculations. Further, since the mechanics of least squares regression forces the sum of the squared residuals to be zero, there is a bias in the computed residual that is the opposite direction of the "true" residual if the exclusion period does not cover all of the observations that it should.

Once the appropriate α 's and β^{\prime} 's were obtained from the regression equation the value of the u's was determined by rerunning the regression using the appropriate values of R_{1}, R_{m}, α_{i} and β_{1} :

$$
u_{1 t}=\operatorname{lnR} R_{1 t}-\left(\alpha_{i}+\beta_{i} \operatorname{lnR_{mt}}\right)
$$

where the symbols are as defined previously.

It will be noted that the market model used in this research does not contain a term to account for the industry effect on stock prices. The industry effect is generally ignored in research studying the market reaction to accounting information for three reasons:
(1) there is a problem in operationalizing the concept of an industry and defining specific industry classifications that would be acceptable (as suggested in Brown and Ball (1967)); (2) it is felt that the industry effect is not significant (Baskin, 1962); ${ }^{6}$ and (3) there were so few furms in most of the SIC andustry classifications that abstracting industry effects could also reduce individual firm effects (see Appendix D for a classification of firms by their two-digat SIC code).

For the reasons discussed above, an industry term was not included in the market model. However, the method of determining the firms to be included in the control group, as explained in section 3.2 , should minımize potential industry effects when portfolios made up of firms reporting extraordinary items are assigned to portfolios made up of firms not reporting extraordinary items. It must be noted that this method will not control for industry effects (if they exist) between extraordinary item portfolios.

To evaluate the reasonableness of defining week 0 as the week of expected market reaction to earnings announcements, the day of earnings announcement (in the WSJ) was determined. (A problem might arıse, if, say, all earnings announcements appeared on Friday. Although
 1973) lend empirical support to this statement. In addition, Kaplan and Roll (1972, p. 245) reported that, in their study, the industry effect was neglıgible.
the market would be expected to react swiftly, the complete market reaction to the earnings announcement might not be manifested until Monday of the following week.) The number of firms announcing on each day appears in Appendix P. The problem described above does not appear to exist.

3.7 Evaluating Security and Portfolio Returns

An Abnormal Performance Index was constructed for each security:

$$
A P I_{W, i}=\prod_{W=-52}^{R_{i, w}}-\underset{W=-52}{E\left(e^{E\left(R_{i, w} \mid R_{m, w}\right)}\right.}
$$

where:

$$
\begin{aligned}
A P I_{W, i}= & \text { Abnormal Performance Index for security } i \text { from week } \\
& -52 \text { through week } W, 7 \\
e^{R_{i, W}}= & \text { the natural anti-logarithm of the return on security } i \\
& \text { in week } w, \\
e^{E\left(R_{i, W} \mid R_{m, W}\right)}= & e^{\left(R_{i, w}-u_{i, w}\right)}=\text { the natural anti-logarithm of the } \\
& \text { (ex-post) expected rate of return on security } i \text { given } \\
& \text { the market return. }
\end{aligned}
$$

Firm's weekly API's were averaged by portfolio:

$$
A P I_{W, p}=\frac{1}{N_{p}} \cdot \sum_{n=1}^{N_{p}} A P I_{W, 1}
$$

$7_{\text {For purposes of the API, week } 0 \text { is defined as the week a firm's }}$ earnings were announced; hence week-52 is one year prior to earnings announcement.
where

$$
\begin{aligned}
\mathrm{API}_{W, p} & =\text { Abnormal Performance Index for portfolio } p \text { for week } W, \\
N_{p} & =\text { number of firms in portfolio } p .
\end{aligned}
$$

Beaver and Dukes (1972) have explained the API as being the net proceeds that would be realized by pursuing a trading strategy based on forecast error.

If one had knowledge of the forecast error W weeks in advance of the announcement and if unexpected earnings changes are associated with unexpected price changes, the expected value of $u_{i w}$ would be positive for firms with a posituve forecast error because actual earnings would be greater than expected; the converse would be true for the expected value of $u_{i w}$ for the negative forecast error group.

Assume that there exists a market for contracts in which an investor can buy and sell claims to deliver an amount equal to one dollar plus the expected return on securaty i, given the ex post value of the market return ($E\left(R_{i, w} \mid R_{m, w}\right)$). For each security that has a positive forecast error, the investor will purchase one dollar of the security (take a "long" position on that security) and will sell a contract which promises to pay one dollar plus the conditional expected return on security i, at the time of the announcement of the earnings report (W weeks from now). The current price of such a contract will be one dollar exactly. Hence the proceeds from the short position in the contract can be used to pay for the long position. The investor has none of his own funds invested in security 1 . At the end of W weeks the investor will sell security i and use the proceeds to cover the short contract.

For those firms with negative forecast errors, exactly the opposite trading strategy would be executed; the investor would take a long position $1 n$ the conditional return contract and would go short in the security itself. For the entire portfolio the net proceeds would be precisely the negative of the API. (Beaver and Dukes, 1972, p. 325.) ${ }^{8}$

3.8 Descriptive Statistics

In addition to the calculation of the API for each portfolio, the firms were classufled within each portfolio by sign of their 1 ndividual API's to see $1 f$ there is a difference between the number of firms with positive or negative API's between portfolios. Either a chi square or Fischer exact probability test were used to test for significance.

The Kolmogorov-Smirnov two sample test (Siegel, 127-136) and the Kruskal-Wallıs one-way analysis of variance by ranks test (Sıegel, 184194) were also used to compare API's at week zero for different combinations of firms.
${ }^{8}$ Professor James C. McKeown is currently conducting research on the differences between the Beaver and Dukes API formulation (illustrated in Section 3.7) and the Ball and Brown API formulation (which would be

$$
A P I_{W}=\frac{1}{N} \sum_{\mathfrak{n}}^{N} \prod_{W=-52}^{W}\left(1+u_{n W}\right)
$$

p. 168)). His initial findings indicate that the Beaver and Dukes formulation has a constant negative bias of about 3%.

CHAPTER IV

RESULTS OF RESEARCH

4.1 Introduction

Chapter IV reports the outcome of the tests proposed in the preceding chapter.

4.2 Results of Tests

The major question which prompted this research was whether the securities market appears to react to firms' net income figures or income before extraordinary items. To investigate this question we examined the API's of companies that did and did not report extraordinary items.

The API's for the firms were calculated so as to provide " . . an operational index of association between accounting data and security prices" (Beaver and Dukes, 1972, p. 326). In addition chi square, Kolmogrov-Smirnov and Kruskal-Wallis tests were made to further study the relatjonship between API's and earnings information.

4.2.a API and Statistical Tests by Model and Portfolio

Appendix Q lists all the $A P I ' s$ for weeks -52 to +26 for each portfolio. Rather than engage in ex post suppositions of what information the market may have been impounding, given the movements of the API's for each portfolio, the API's at week zero were analyzed. Appendix Y contains the week zero API for the firms in this study.

Table 6 contans the API for each portfolio at week zero, the number of firms $1 n$ each portfolio, the t value comparing the portfolio API (which is the mean of the firm API's at week zero) and the results of the Kruskal-Wallis test (Siegel, 184-194). The signs of the API's at week zero (except for model 2 portfolio 6 , which was, however, negative for 38 weeks prior to week zero) are what we would expect if investors impounded net income "signals" during the year. The API's for portfolio 1 are slgnificantly different from zero at the . 01 level for two models (1 and 4) and at the . 05 level for one model (3). Portfolios 3 and 4 are slgnificantly different from zero for three models (1, 3 and 4) at the .01 level and portfolio 3 is significantly different from zero for model 2 at the .05 level. In addition, the Kruskal-Wallis statıstic indicates that the API's at week zero within each of the four models differ slgnificantly at less than the . 05 level (although there is no significant difference between portfolios of like sign of e_{t}).

Since the API is a mean figure, it can be influenced by one or two extremely varıant induvidual securities; therefore, Table 7 was prepared showng the number of firms reporting positive and negative API's at week zero for each model. This table shows that for portfolios $1,3,4$ and 6 the sign of the API for the majority of the securities agreed with the sign of unexpected earnings after extraordinary items $\left(e_{t}\right)$. Portfolıo 5 results indicate that, as of week zero, the sign of the API for most of the securaties agreed with the sign of e_{t}, while for portfolio 2 the results are mixed. For models 1 and 2 there were

TABLE 6

WEEK ZERO API BY PORTFOLIO

[^2]TABLE 7

CLASSIFICATION OF FIRMS BY PORTFOLIO BY SIGN OF FIRM API AS OF WEEK ZERO

		Portfolio ${ }^{\text {a }}$					
		1	2	3	4	5	6
Sign of:		$+$	-	*	-	\pm	*
Mode1		$+$	\pm	\pm	-	-	-
	$\mathrm{API}+$	19	3	39	19	2	17
	API-	9	3	15	38	4	26
		(-1.70)	(0.00)	(-3.13)	(-2.38)	(-0.41)	(-1.22)
	API+	21	4	37	14	3	19
2	API-	17	4	20	28	6	22
		(-0.49)	(0.00)	(-2.12)	(-2.01)	(-0.67)	(-0.31)
	API+	14	7	33	19	3	23
3	API-	8	3	12	38	5	30
		(-1.07)	(-0.95)	(-2.98)	(-2.38)	(-0.35)	(-0.82)
	API+	21	5	38	16	1	17
4	API-	12	3	21.	35	5	22
		(-1.39)	(-0.35)	(-2.08)	(-2.52)	(-1.22)	(-0.64)

$a_{\text {The n }}$ number in parenthesis is the Z statlstic from the binomiai test, corrected for continulty, of the null hypothesis that the proportions in the cell are equal to .5 (Siegel, 36-42); $.975^{\mathrm{Z}}= \pm 1.96$. *No extraordinary items reported for firms in this portfolio. an equal number of firms agreeing wath each of the unexpected income measures, but for models 3 and 4 most of the securities API's agreed with the sign of e_{t}. However, the Z statistic indicates that the only portfolios having observations significantly different from. 5 at the .05 level are portfolios 3 and 4.

It was anticipated that a chi square test fol 3 samples would be made on portfolios 1,2 and 3 ; and on portfolios 4, 5 and 6 using the data presented in Table 7 to test the significance of the proportion of firms falling in each category. However, that could not be done
because the chi square test requires that the expected frequencies in each cell should not be too small. "When thls requirment is violated, the results of the tests are meaningless. Cochran (1954) recommends that for χ^{2} tests with df larger than 1 . . . fewer than 20 percent of the cells should have an expected frequency of less than 5. . . ." (Siegel, p. 178.) Since portfolios 2 and 5 would have had expected frequencies of less than 5 , no comparison could be made between portfolios 1,2 and 3 or between 4, 5 and 6 .

As an alternative to the chi square test for 3 samples, the Fischer exact probability test (Siege1, 69-104) was made between each of the portfolios 1, 2 and 3; between each of the portfolios 4, 5 and 6; and between portfolios 2 and 4. The test determines whether the two portfolios differ in the proportion of positive API firms and negatave API firms contalned. The null hypothesis was that any two tested portfolios show equal proportions of positive and negative API. None of the statistucs (see Table 8) were signıficant at the .05 level which leads to the conclusion that the proportion of firms whose API agreed in sign wath e_{t} is not significantly different between each of portfolios 1 , 2 , or 3 ; between each of portfolios 4,5 or 6 ; or between portfolios 2 and 4.

4.2.b API and Statistical Tests of Portfolio Combinations

To obtain a more comprehenslve API measure, a composite API,
like that used by Beaver and Dukes (1972), was constructed as follows (deleting the w subscript):

TABLE 8

FISCHER EXACT PROBABILITY TEST RESULTS ON CLASSIFICATION OF FIRMS BY PORIFOLIO BY SIGN OF FIRM API AS OF WEEK ZERO

| | | | |
| :--- | :---: | :---: | :---: | :---: |
| | | | |
| Portfolios: | | | |

${ }^{\text {a }}$ Probability for a one-talled test achievang a 2×2 matrix as extreme or more extreme than the one tested.

$$
\operatorname{API}_{(A, B)}=\frac{N(A) \cdot A P I(A)-N(B) \cdot \operatorname{API}(B)}{N(A)+N(B)}
$$

where:
$\mathrm{API}_{(\mathrm{A}, \mathrm{B})}=$ composite API composed of portfolios A and B ,
$A, B=$ portfolios (when $A=1$ then $B=3$, when $A=2$ then $B=5$, when $A=3$ then $B=6$),
$N(A), N(B)=$ number of securities in portfolios A and B respectively

This form of average API would give a nonzero API if a positive association does exist between the forecast errors and the API's. Appendix R presents the composite API's for models 1-4. Models 1, 3 and 4 indicate that $2 f$ one knew (at week -52) the composition of each composite portfolio and invested in the securities composing the composite portfolios (by buying long those securities in portfolio A and selling short those securities in portfolio B), he would be able to earn a return
above that on the market portfollo. In model 2 the composite Λ PI for portfolios 2 and 5 indicates that an investor could earn above average returns if he held the securities from veek -52 to week 0 , but after that there would be a risk of a negative return.

Table 9 contains the week zero composite API for the portfolio combinations along with therr t and H statistics. For all models the smallest API is assoclated with the group composed of portfolios 1 and 4 (except for model 1). The t test indicates that all the composite week zero API for combinations 1 and 4 , and 3 and 6 are significantly different from zero at the .01 level except for model 2. The KruskalWallis test statlstic shows that none of the API's are signaficantly different from each other in any given model.

As a further test, the portfolio combinations were tested to see if there were any differences between the combinations as to the number of times the sign of the induvidual securities API's agreed wath the sign of e_{t} at week zero. Since the expected frequencies of all the cells were now greater than five, a chi-square test for three groups was made. As shown in Table 10 an all models the majority of the API's agree with e_{t} as of week zero. As the Z statistics indicate, the ratios of times firm $A P I^{\prime} s$ agreed with e_{t} to the total in each cell are significantly different from .5 at the .05 level for all portfolio combinations except combination 2 and 5. The inslgnificant chl square statistics leads us to accept the null hypothesis thac there $1 s$ no difference in the proportions of securaty AII's agreeing with e_{t} between the portfolios.

TABLE 9
WEEK ZERO API BY MODEL AND PORTFOLIO COMBINATIONS

	$\begin{aligned} & \text { Portfollo } \\ & 1+4 \end{aligned}$	$\begin{gathered} \text { Combinatzo } \\ 2+5 \end{gathered}$	$3+6$	$\mathrm{H}^{\text {a }}$	$\mathrm{p}^{\text {b }}$
Sign of e_{t}^{\prime}; and	Agree	Differ	No E.I.		
1. ${ }^{\text {A }}$. 138761	. 049114	. 140283		
	$\begin{array}{r} 85 \\ 4.339^{c} \end{array}$	$\begin{array}{r} 12 \\ 0.987 \end{array}$	$\begin{array}{r} 97 \\ 4.290^{c} \end{array}$. 959961	. 623
2. $A P I_{O}$ n t	. 070875	. 045706	. 055313		
	$\begin{array}{r} 80 \\ 2.107 \end{array}$	$\begin{array}{r} 17 \\ 0.579 \end{array}$	$\begin{array}{r} 98 \\ 1.586 \end{array}$. 397539	. 822
$\text { 3. } \begin{aligned} & \mathrm{API}_{0} \\ & \mathrm{n} \\ & \mathrm{t} \end{aligned}$. 130681	. 107953	. 113191		
	3.900 ${ }^{\text {c }}$	${ }_{2}{ }^{18} 119 \mathrm{~d}$	$\begin{array}{r} 98 \\ 3.388^{c} \end{array}$. 051842	. 975
4. $\begin{aligned} & \mathrm{API}_{0} \\ & \mathrm{n} \\ & \mathrm{t}\end{aligned}$. 140139	. 105183	. 124898		
	$\begin{gathered} 84 \\ 4.442^{c} \end{gathered}$	$\begin{array}{r} 14 \\ 1.909 \end{array}$	$\begin{array}{r} 98 \\ 3.788^{c} \end{array}$. 274979	. 874
$a_{\text {The }}$ Kruskal-Wallis statistic corrected for ties (API's within 5×10^{-5} of each other were arbitrarily decided to be ties).					
$b_{\text {The }}$ probability of exceeding H if the null hypothesis of identical population is true.					
${ }^{\text {c API's significantly }}$ different from zero using a one-tailed t-test at $\alpha=.01$.					
${ }^{d}$ API's significantly different from zero using a one-talled t-test at $\alpha=.05$.					

NUMBER OF TIMES THE SIGN OF FIRM API AGREES WITH THE SIGN OF e_{t}

Sign of e_{t} and e_{t}^{\prime} :	$\begin{aligned} & \text { Port } \\ & \frac{1 \text { and } 4}{\text { the same }} \end{aligned}$	$\begin{aligned} & \text { io Combin } \\ & \frac{2 \text { and } 5}{\text { opposite }} \end{aligned}$	$\begin{aligned} & \text { ons }^{\text {a }} \\ & \frac{3 \text { and } 6}{\text { no E.I. }} \end{aligned}$	Chi-square Test of Difference in Proportions Between Portfolios ${ }^{\text {b }}$
Model 1 Agree Sign of API at week 0 and e_{t} : Disagree	$\begin{gathered} 57 \\ 28 \\ (-3.04) \end{gathered}$	$\begin{gathered} 7 \\ 5 \\ (-0.29) \end{gathered}$	$\begin{gathered} 65 \\ 32 \\ (-3.75) \end{gathered}$	0.400
Model 2 Agree Sign of API at week 0 and e_{t} : Disagree	$\begin{gathered} 49 \\ 31 \\ (-1.40) \end{gathered}$	$\begin{gathered} 10 \\ 7 \\ (-0.49) \end{gathered}$	$\begin{gathered} 59 \\ 39 \\ (-1.92) \end{gathered}$	0.045
Model 3 Agree Sign of API at week 0 and e_{t} : Disagree	$\begin{gathered} 52 \\ 27 \\ (-2.70) \end{gathered}$	$\begin{gathered} 12 \\ 6 \\ (-1.18) \end{gathered}$	$\begin{gathered} 63 \\ 35 \\ (-2.73) \end{gathered}$	0.065
Model 4 Agree Sign of API at week 0 and e_{t} : Disagree	$\begin{gathered} 56 \\ 28 \\ (-2.95) \end{gathered}$	$\begin{gathered} 10 \\ 4 \\ (-1.34) \end{gathered}$	$\begin{gathered} 60 \\ 38 \\ (-2.12) \end{gathered}$	0.919

a The numbers in parentheses are the Z statistic from the binomial test, corrected for continuity, of the null hypothesis that the proportion in the cell is signıficantly different from $.5 ; .975^{2}= \pm 1.96$.
${ }^{\mathrm{b}}$ Chi-square significant at the .05 level for $\mathrm{df}=2$: 5.99.
4.2.c API and Statistics Calculated by Sign of Net Extraordinary Item(s) and Whether the Firms Announced or Did Not Announce that They Would Report Extraordinary Item(s)

The average API for firms that announced that items classified as extraordinary would be reported on their annual financjal statements was calculated and compared to the average API for firms that did not announce this fact. A firm was classified in the "announced" group if, prıor to week zero, there was notification in the Wall Street Journal that what would be reported as an extraordinary item had or would occur (i.e., a plant had been sold or would be sold in the current fiscal year). If a firm reported several extraordinary items, it was placed in the "announced" group if one or more of the extraordinary items was announced.

Appendix S contans a listing of these API's and shows that those firms that announced that they would report (at least) one extraordinary item were poorer performing firms on average, while those firms that did not announce performed somewhat better. Table 11 contains week zero statistzes for these groups and shows that nejther API is significantly different from zero using the t-test. Nor is the difference between them significant using the Kolmogrov-Smirnov two sample test.

To further analyze the announcement of extraordinary items and stock price movements, the API's were calculated for firms by the sign of their net extraordinary items and whether they announced or not. Appendix T shows the API for farms reporting net extraordinary losses classified by whether they announced or did not announce. This Appendix shows that firms reporting net extraordinary losses did not perform

TABLE 11
WEEK ZERO API FOR FIRMS ANNOUNCING AND NOI ANNOUNCING

	API_{0}	n^{a}	t^{b}	z^{c}	Probabılity $^{\mathrm{d}}$
Firms					
Announcing	-.026258	39	-0.458		
Firms Not Announcing	.358001	59	-0.910		

$a_{\text {The }}$ number in parentheses is the Z statistic from the binomial test, corrected for continulty, of the null hypothesis that the proportion in the cell is significantly different from $.5 ; .975^{Z}= \pm 1.96$.
${ }^{\text {b API's not significantly different from zero at the } .05 \text { level. }}$
c_{Z} statistic calculated using the Kolmogrov-Smırnov two sample test.
$\mathrm{d}_{\text {The probability }}$ of the statistic exceeding Z if the hypothesis of equality of the API's is true and the alternative 1 s two sided.
well diring the year for which the extraordinary items were reported. However, shortly after week zero, the API turned positive and stayed positive.

Appendix V contains the weekly API for those firms reporting net extraordinary gains that did and did not announce that they would have extraordinary items. IL appears that firms that had net extraordinary gains and did not announce were "good" performing firms for the entire period while firms that had net extraordinary gains and did announce were "poor" performing firms. Perhaps firms that were not performing well thought they could improve investor expectations by announcing "good" news (at least news having a positive effect on current earnings per share). If this was their intent, it did not meet with much success. (See Appendix U for the ticker symbols of firms that
announced and did not announce classified by the sign of the net extraordinary items.)

Table 12 contains the week zero API's for the firms that announced and didn't announce classified by the sign of their net extraordinary items. The t-test indicates that none of the API are significantly different from zero at the .05 level. The Kolmogrov-Smirnov statistic indicates that the differences between API's within the net extraordinary gain and within its net extraordınary loss groups are not signıficantly different from each other at the . 05 level.

TABLE 1.2
WEEK ZERO API FOR FIRMS ANNOUNCIIMG OR NOT ANNOUNCING BY SIGN OF NET EXTRAORDINARY ITEMS

		Ammounced	Didn ${ }^{\text {t }}$ Announce	$z^{\text {a }}$	$\mathrm{P}^{\text {b }}$
Net Extraordinary Gains	API_{0}	-. 031919	. 084613	. 79401	. 55
	${ }_{t}{ }^{\text {c }}$	$\begin{array}{r} 16 \\ -0.489 \end{array}$	$\begin{gathered} 29 \\ -1.538 \end{gathered}$		
Net Extraordinary Losses	API_{0}	-. 022280	-. 018107	. 89402	. 40
	${ }_{\mathrm{n}}^{\mathrm{n}} \mathrm{c}$	$\begin{array}{r} 23 \\ -0.255 \end{array}$	$\begin{array}{r} 30 \\ -0.407 \end{array}$		

$a_{\text {The }}$ value of the Kolmogrov-Smirnov statıstic.
$\mathrm{b}_{\text {The }}$ probability of the statistic exceeding Z if the hypothesis of equality of the API's is true and the alternative is two-sided.
${ }^{C}$ API's not significantly different fxon zero at the . 05 level.

4.2.d API and Statistics by Sign and Materiality of Extraordinary Item(s)

Appendix W contains the average API for firms reporting net positıve and net negative extraordinary 1 tems; each group was divided into two subgroups based on the materiality of the net extraordinary items reported. Materıalıty was measured by dividing the extraordinary Items per share by the earnings per share before extraordinaxy items (three firms reporting negatıve earnings per share before extraordinary items were omitted from this analysis). The large, small classification was arbitrarily made by placıng the half of the firms with the largest net extraordinary gain (loss) in the large gain (loss) group. The remander of the firms were placed in the small gann (loss) group. In the case of an odd number of firms reporting extraordinary gdins, the extra firm was placed in the small group. See Appendix X for the tleker symbols of firms in each classification.

It is interesting to note that firms reporting small net extraordinary items (eather a gain or a loss) performed poorly up until about 16 weeks prior to earnings announcement; from that time on these securities performed well, especially those in the small extraordinary loss group. Firms that reported large extraordinary losses performed somewhat poorly during the entıre period, while firms that reported large extraordinary gains fluctuated around zero during the year the extraordinary gain occurred, but in week +7 the API turned and stayed negatave. However, as Table 13 shows, the API's were not significancly different from zero or from each other at week zero.

TABLE 13
WEEK ZERO API FOR FIRMS BY SIGN AND MATERIALITY OF NET EXTRAORDINARY ITEMS

		Large	Small	$z^{\text {a }}$	$\mathrm{P}^{\text {b }}$		
Extraordinary Gain	API_{0}	-. 038007	. 048127	. 65996	. 78		
	$\mathrm{n}_{\mathrm{c}} \mathrm{c}$	$\begin{array}{r} 22 \\ 0.595 \end{array}$	0.822^{23}				
Extraordinary Loss	$A P I_{0}$	-. 066754	-. 029194	. 84044	. 48		
	n_{t}	$\begin{array}{r} 25 \\ -1.269 \end{array}$	0.363^{25}				
$a_{\text {The }}$ value of the Kolmogrov-Smirnov statistic. $b_{\text {The probabilıty of }}$ the statıstic exceeding Z if the hypothesis of equality of the API's is true and the alternative is two-sided.							
${ }^{\text {c API's not significantly different from zero at the . } 05}$ level.							

In an attempt to determine why firms reporting small extraordinary items performed better than those reporting large extraordinary gains in the weeks following week zero, Table 14 was constructed. It shows the percent of tumes that firms classified in the large, small materiality group were placed in each portfolio (summed across all four models).

The table may shed some light on why the small extraordinary loss group performed better than the large extraordinary loss group. A larger percent of the time the small extraordinary loss firms were classified in portfolio 1 and a fewer percent of the time in portfolios 4 or 5 as compared with the large extraordinary loss firms. Table 14, however,

TABLE 14
PORTFOLIO CLASSIFICATIONS FOR FIRMS BY SIGN AND MATERIALITY OF EXTRAORDINARY ITEMS ${ }^{a}$

	1		4	5
Sign of: ${ }^{\prime}$	$+$	-	-	$+$
e	$+$	+	-	-
Extraordinary Gain:				
Large	43\%	26\%	30\%	0
Small	47\%	9\%	43\%	0
Extraordinary Loss:				
Large	6\%	0	74\%	20\%
Small	30\%	0	60\%	9\%

${ }^{\text {a }}$ Numbers in this table are the percent of times that firms were classified in a given portfolio (summed across all models). The rows may not total 100% because of firms classufied in portfolios 7 , 8 , or 9 .
does not shed any light on the differences in performance of the positive extraordinary item groups.

4.2.e Lag between Fiscal Year End and Earnings Announcement

Since there has been some interest expressed in the length of time taken to announce the annual earnings of a firm (Chapman), an analysis was made of the lag between fiscal year end and the earnings announcement date for the firms used in this study.

Chapman tested various hypotheses concerning the period between fiscal year end and earnings announcement dates. One hypothesis was that there is a difference in the amount of time required to release
"good" news, "bad" news and "no" news based on income before extraordinary items. In his study he found that there was no significant difference in the "lag" periods.

Chapman classified firms into "good," "bad," or "no" news groups if the ratio of actual earnings to expected earmings was $>,<, \simeq 1$ respectively. Chapman defaned expected earnings as the mean projected annual EPS before ext:aordınary items as predicted by Standard \& Poor's Earnings Forecaster. (The calculation used projections made after the contributors had access to a firm's third quarter earnings report.)

To see if his results held for the firms and the models used in this study, an $A N O V A$ was made of the number of weeks between fiscal year end and the earnings announcement. The results (see Table 15) indicate there is no significant difference in the lag perıod between portfolios.

To test if the sign of extraordinary items influenced the lag (which we might expect if there were some disagreement between a firm's management and their auditors as to the amount of and/or classification of the item in question or if firms were reluctant to announce extraordinary losses), the length of time, in weeks, was examined. A summary of the data is presented in Table $16(\mathrm{~A})$.

Table 16(B) contains the ANOVA statistics from the test of the lag data. The F ratio indicates that there is a significant difference, at the . 06 level, between the theee groups. To see which lags caused these results of the ANOVA, the Scheffe' method (Glass and Stanley, p. 388-397) of multiple comparisons was applied to the three groups. The results (shown in Table 16 (C)) Indicate that there is a difference at the .10 level in the lags for the net extraordinary loss group and both

TABLE 15
mean weekly lag between fiscil year end and earnings announcenent date by portfolio

TABLE 16
test of lag between fiscal year end and earnings announcenent
DATE FOR FIPMS REPORTING NET EXTRAORDINARY GAINS, NET EXTRAORDINARY LOSSES AND NO EXTRAORDINARY ITEMS
(A)

WEEKLY LAG BETWEEN FISCAL YEAR END and the Earnings announcenient date

	No Extra- ordinary $(\mathrm{n}=98)$	Net Extra- ordinary Gains $(\mathrm{n}=45)$	Net Extra- ordinary Losses $(\mathrm{n}=53)$
Mean Lag	6.2	6.0	7.2
Standard Deviatıon	2.4	2.8	2.4

(B)

ANOVA STATISTICS FOR THE TEST OF THE LAG PERIOD BETWEEN FISCAL YEAR END AND EARNINGS ANNOUNCEIENT DATE

Source	SS			
Between Groups	37.56	2	MS	F Ratio
Within Groups	1192.83	193	18.78	

TABLE 16 (continued)
(C)

MULTIPLE COMPARISON OF LAG PERIODS USJNG tHE SCHEFFE' METHOD

Comparıson between Groups Reportıng	$\left\|\hat{\psi}^{\prime} / \hat{\sigma}_{\psi}\right\|^{\mathrm{b}}$
No Extraordınary Item and Net Extraordınary Gaıns	0.45
Net Extraordınary Gains and Net Extraordınary Losses	2.40
No Extraordınary Items and Net Extraordınary Losses	2.35

```
a . .95 F
b.90 F F ,193 = 2.34
```

the net extraordinary gain groups and the group that didn't report any extraordinary 1 tems.

The data used in Tables 15 and 16 were not tested to see if they satısfied the assumptions of normality and homogenenty of variance implicit in the one-way fixed-effects ANOVA because " . . . F tests are robust with respect to departures from homogeneity of varıance" (Winer, 206) and "[m]any years of study have shown clearly that the effects of nonnormality of the nominal level of significance of the F test are extremely slight" (Glass and Stanley, 372).

4.3 Sumnary of Research Results

Examindtion of the weekly API's for the four models leads to only tentative conclusions. The API's for all portfolios in all models (except one) had the sign that we would expect at week zero if the securities market impounded net income rather than income before
extraordinary items. The one exception was portolio 5 of model 2 which had a positıve sign. Severdl of the API, at week zero, were signifıcantly dafferent from zero for portfolios 1,3 and 4 using the tro-tailed t-test. Within each model, the Kruskal-Wallis test indicated there was a signıficant difference in API at week zero between portfolios (although there was no significant difference between portfolios of like sign of e_{t}).

A study of the number of firms that had positive or negative week zero API by portfolio found that there was no significant difference in the ratios between portfolios for a given model.

The composite API's at week zero for portfolıo combinations 1 and 4, and 3 and 6 were signıficantly different from zero at the . 01 level (except for model 2). The Kruskal-Wallis statistic indicated that the portfolio combinations were not significantly different from each other within a given model.

A study of the number of firms that had positive or negative week zero API by portfolio combinations showed that there was no difference in the ratio between portfolio combinations for a given model.

The ratio of times that a firm's API agreed with the sign of e_{t} was signlficantly different from .5 at the .05 level for portfolio combinations 1 and 4, and 3 and 6.

The study of the week zero API for firms annourcing or not announcing showed that firms not anourcing had a higher API Lhan those announcing, but the difference was not significant. A more detailed study of firms announcing or not announcing subclassified by (1) the sign of the net extraordinary items and (2) the materiality of the net
extraoldinary items also showed no significant differences in week zero API's.

An investigation of the lag time between fiscal year end and earnings announcement date revealed no significant difference between portfolios for a given model. However, there was a difference (at the . 10 level) between the group of firms reporting net extraordinary losses and both the groups of firms reporting net extraordinary gains and no extraordinary items.

CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

The objective of this study was to determine if the securaties market impounds net income or income before extraordinary items. This was accomplished partly by analyzing firms' API's.

Justifacation for such a study centered on a belief that more should be known about what affects investors' decisions, particularly in light of the AICPA's decision that firms should manimaze the use of the extraordinary item classification on the income statement, and the findings of other studies that firms may try to influence investors' actions by manıpulating extraordınary items.

Firms reporting extraordinary items were selected for anclusion in this study based on the following:
(1) the firm reported extraordinary item(s) in their fiscal year ended during the period January 1, 1967 (when APB Opinion No. 9 went into effect) through December 31, 1972 (the last date data were available),
(2) the firm reported no extraordinary 1 tem(s) for 3 years prior tc and 2 years after the year in which the extraordinary item was reported,
(3) the firm did not restate past earnings or report an adjustment to retained earnings in the year the extraordinary item was reported,
(4) the net effect of two or more extraordinary items was not.
(5) the firm was listed on the NYSE for at least two years prior to the year the extraordnary item was reported, and
(6) there was no announcement of a change in the amount of dividends paid in the week the earnings was announced for the year the extraordinary item was reported.

Ninety-eight firms were found to meet the above criteria. For each firm that reported an extraordinary item, one "control" farm was selected from those firms that did not report an extraordinary atem during the period 1967-1972. The control firms were selected by trying to select farms from the same industries as the firms reporting extraondinary items. These firms were subjected to these criteria:
(1) there was no restatement of earnings or adjustment to retained earnings in the year of interest (the year the corresponding extraordinary 1 tem fırm reported its extraordınary $1 t e m$),
(2) the firm was on the NYSE at least two years prior to the year of interest, and
(3) there was no announcement of a change in the amount of dividend paid in the week the earnings for the year of interest was announced.

For all firms, reported weekly stock price data and dividend data were obtained and weekly price relatives were calculated. The price relatives were used to calculate an Abnormal Performance Index for each firm.

To obtain measures of expected earnings for the year of interest for the firms in the study, four expectation models were used. For each model, expected earnings was compared with the income number(s) reported
by the firms used in the study and the finns were placed in portfolios depending on the sign of their unexpected earnings. The signs of the unexpected earnings for each portfolio are shown in Table 17.

TABLE 17
SIGN OF UNEXPECTED EARNINGS IN EACH PORTFOLIO

An API was calculated for each portfolio by averaging the individual firm's API's; in addition composite API's were calculated (by combining complementary portfolios within each model).

Analysis was also done on API's based on the sign of net extraordinary items, whether the extraordinary items were announced or not, and by the materiality of the net extraordinary items, In addition, an analysis was made of the lag between the fiscal year end and when earnings were announced.

Various statistical tests, including chi square, Fischer exact probabilıty, Kolmogrov-Smirnov, and the Kruskal-Wallıs one-way analysis of variance, were run on the data.

5.2 Limitations

There were rather severe criteria that firms had to meet to be included in this study. Therefore, one limitation is the generalizability of the results. One can only draw conclusions about those firms included in the study and about those investors entering into transactions involving those securities during the period studied.

The market model that was used to derive each security's $u_{i t}$ term includes several assumptions about investors' characteristics and securities market characteristics. To the extent that these assumptions led to a misspecification of the model, the results of this study are affected.

5.3 Conclusions

From an analysis of the API and the statistical tests performed the following conclusions were reached.
(1) There is some indication that the securities market impounds (or acts as if it relies more on) net income information rather than income before extraordinary items. This conclusion is based on the findings of Table 6 that the API for portfolios 2 and 5 have the same sign as e_{t} rather than the sign of e_{t}^{\prime}. This conclusion must be considered very tentative, however, since (a) none of these portfolio API's are significantly different from zero, and (b) the proportion of firms in each of these portfolios whose API's agree in sign with e_{t} is not significantly different from .5.
(2) The evidence does not allow us to draw a firm conclusion regarding the information content of the extraordinary item category,
although the information content (if there is any) appears to be small. The reason for this ambiguous conclusion is because of the t and H statistics in Table 9 and the chi-square statistic in Table 10. Table 9 shows that for 3 models the composite API's for portfolio combinations 1 and 4, and 3 and 6 are significantly different from zero (at the . 01 level) at week zero while none of the API's for portfolio combinations 2 and 5 are significant at that level. This implies that if e_{t} and e_{t}^{\prime} are of different signs, the securities market reacts differently than if the signs agree or if there is no extraordinary item. However, since the API's across portfolio combinations for a given model are not significantly different from each other, we cannot place too much faith in that conclusion. Further, the chi-square statistic in Table 10 reveals that there is no significant difference, between portfolio combinations, of the proportion of times that the sign of a firm's e_{t} agrees with the sign of its API. (Although, for models 1,3 and 4 the proportion of firms whose API sign agrees with their e_{t} sign is significantly different from .5 (at the .05 level) for portfolio combinations 1 and 4, and 3 and 6; while for portfolio combination 2 and 5 they are not. This most probably is the result of the small N in portfolio combination 2 and 5.)
(3) As Table 11 shows, more firms didn't announce that they would have items classified as extraordinary items than did announce (significant at the .07 level). This might be evidence that the majority of firms reporting extraordinary items did not feel that extraordinary items are of interest to investors.
(4) Firms announcing that they would report net positive extraordinary items had (insignificantly) lower API's than those firms that
didn't announce that they would have net positive extraordinary items. This leads to the tentative conclusion that those firms announcing tried (unsuccessfully) to favorably impress investors by announcing the positive item.
(5) Firms reporting net extraordinary losses had a longer lag tume (significant at the .10 level) between fiscal year end and earnings announcement date than either firms reporting positive extraordinary items or firms not reporting extraordinary items. This could indicate that firms reporting net extraordinary losses either (1) take longer to prepare or have their financial statements audited or (2) try to delay issuing the financial statements containing the negative amount. Given the evidence collected, one cannot determine which conclusion to draw.

5.4 Recommendations for Future Research

Inasmuch as this study does not conclusively show that the extraordinary items classification has an effect on investor decisions, future research might study investor reactions to specific types of extraordinary items in an attempt to acertain if investors react differently to different types of extraordinary items. In addition it might have been fruitful to study investors' responses to various sized single (rather than net as used in this study) extraordinary items in order to empirically measure materiality. However, since the APB issued Opinion No. 30, the incidence of reported extraordinary items should decrease so as to negate the ability to obtain sufficient data to accomplish the above studies.

However, classification may not be that significant a factor in investors' decisions as long as disclosure is adequate. Further research
might investagate investors' decisions regarding post-APB Opinion 30 classifications as compared to pre-APB Opinion 30 classifications to see if classufication of an item rather than the item itself is important.

LIST OF REFERENCES

American Accounting Association. Accounting and Reporting Standards for Corporate Financial Statements and Supplement. Columbus, Ohio: The Ohio State University, 1957.

American Accounting Association. A Statement of Basic Accounting Theory. Evanston, Ill.: American Accounting Association, 1966.

American Institute of Accountants. Accounting Research Bulletin Number 32, Income and Earned Surplus. Committee on Accounting Procedure, 1947.

Amerıcan Institute of Certified Public Accountants. Accounting Research Bulletin Number 43, A Research and Terminology Bulletin (final edıtion). 1961.

American Institute of Certified Public Accountants. Opinion Number 9, Reporting the Results of Operations. 1966.

American Institute of Certified Public Accountants. Opinion Number 26, Early Extinguishment of Debt. 1972.

Amerıcan Institute of Certified Public Accountants. Opinion Number 30, Reporting the Results of Operations. 1973.

Ball, Ray, and Brown, Philip. "An Empirical Evaluation of Accounting Income Numbers." Journal of Accounting Research 6 (Autumn 1968): 159-178.

Ball, Ray, and Brown, Philip. "Portfolio Theory and Accounting." Journal of Accounting Research 7 (Autumn 1969): 300-323.

Ball, Ray, and Watts, Ross. "Some Time Series Properties of Accounting Income." The Journal of Finance 27 (June 1972): 663-681.

Baskin, Elba R. "The Communication Effectiveness of Consistency Exceptions." The Accounting Review 47 (January 1972): 38-51.

Beaver, William. "The Information Content of Annual Earnings Announcements." Empirical Research in Accounting: Selected Studies 1968. Supplement to the Journal of Accounting Research (1968): 67-92.

Beaver, William H. "The Time Series Behavior of Earnings." Empirical Research in Accounting: Selected Studies, 1974. Supplement to Volume 8 of the Journal of Accounting Research (1970): 62-99.

Beaver, William. "The Behavior of Security Prices and Its Implications for Accounting Research." Supplement to Volume 47 of The Accounting Review (1972): 407-437.

Beaver, William H., and Dukes, Roland E. "Interperiod Tax Allocation, Earnings Expectations, and Behavior of Security Prices." The Accounting Review 47 (Aprı1 1972): 320-332.

Beaver, William H., and Dukes, Roland E. "Interperiod Tax Allocation and the δ-Depreciation Methods: Some Empirical Results." The Accounting Review 48 (July 1973): 549-559.

Benston, George. "Published Corporate Accounting Data and Stock Prices." Empirical Research in Accounting. Selected Studies, 1967. Supplement to Volume 5 of the Journal of Accounting Research (1967): 1-54.

Bernstein, Leopold. Accounting for Extraordinary Gains and Losses. New York: Ronald Press, 1967.

Brealsey, Richard A. An Introduction to Risk and Return from Common Stocks. Boston: M.I.T. Press, 1969.

Brown, Phılıp, and Brown, Ray. "Some Prelamınary Findangs on the Association between Earnings of a Firm, Its Industry and the Economy." Emparical Research in Accounting: Selected Studics, 1967. Supplement to Volume 5 of the Journal of Accounting Research (1967) : 55-77.

Chapman, Gordon L. "An Empirıcal Investigation of the Time Taken to Announce the Anmual Earnings of the Frrm." Paper presented at the 1974 annual meeting of the Amerıcan Accounting Association, Now Orleans, La.

Cumming, John. "An Empırical Evaluation of Possible Explanations of the Differing Treatment of Apparently Similar Unusual Items." Unpublished doctoral dissertation, University of Illinois, 1973.

Cushing, Barry E. "An Empirical Study of Changes in Accounting Policy." Journal of Accountang Research 7 (Autumn 1969): 196-203.

Daily Stock Price Record: New York Stock Exchange. Several issues, 1966-1972.

Dasher, Paul, and Malcom, Robert. "A Note on Income Smoothing in the Chemical Industry." Journal of Accounting Research 8 (Autumn 1970): 253-259.

Downes, David, and Dyckman, Thomas. "A Critıcal Look at the Efficient Market Empirical Research Litcrature." The Accounting Review 48 (April 1973): 300-317.

Fama, Eugene F. "Efficient Capital Markets: A Review of Theory and Fmnirical Work." The Journal of Finance 25 (May 1970): 383-417.

Fisher, Lawrence. "Some New Stock-Market Indexes." The Journal of Business 39 (Jan. 1966): 191-225.

Glass, Gene V., and Stanley, Julian C. Stathstical Methods in Education and Psychology. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1970.

Graham, Benjamin; Dodd, David; and Cottle, Sidney. Security Analysis: Principles and Techniques. 4th ed. New York: McGraw-Hill Book Company, 1962.

Jensen, Mıchael, ed. Studies in the Theory of Capital Markets. New York: Praeger Press, 1972.

Kaplan, Robert S., and Roll, Richard. "Investor Evaluation of Accountang Information: Some Empirical Evidence." The Journal of Business 45 (April 1972): 225-257.

King, Benjamin. "Market and Industry Factors in Stock Prıce Behavior." Security Prices: A Supplement. Supplement to Volume 39 of The Journal of Business (January 1966): 139-190.

Lorie, James H., and Hamilton, Mary T. The Stock Market: Theories and Evidence. Homewood, Illınoıs: Richard D. Irwan, 1973.

Mao, James C. T. "Essentials of Portfolio Diversification Strategy." The Journal of Finance 25 (December 1970): 1109-1121.

Markowitz, Harry. Portfolio Selection--Efficient Diversificalion of Investments. New York: John Wiley, 1959.

May, Robert. "The Influences of Quarterly Earnings Announcements on Investor Decisions as Reflected in Common Stock Price Changes." Empirical Research in Accounting: 1971. Supplement to Volume 9 of the Journal of Accounting Research (1971): 119-163.

Meyers, Stephen. "A Re-examination of Market and Industry Factors in Stock Price Behavior." The Journal of Finance 28 (June 1973): 695-705.

Moody's Annual Dividend Record. Several issues, 1966-1972.
Rappaport, Louis H. SEC Accounting Practice and Procedure. 3rd ed. New York: Ronald Press, 1972.

Rose, J.; Beaver, W.; Becker, S.; and Sorter, G. "Toward an Empirical Measure of Materialıty." Empirical Research in Accountang: Selected Studies, 1970. Supplement to Volume 8 of the Journal of Accounting Research (1970): 133-156.

Securities and Exchange Commission. Accounting Serics Release No. 138, January 12, 1973.

Sharpe, Wıllıam. "A Sımplıfied Model for Portfolıo Analysis." Management Science 9 (January 1963): 277-293.

Sharpe, Wılliam. "Capıtal Asset Prices: A Theory of Market Equilıbrium under Conditions of Risk." Journal of Finance 19 (September 1964): 425-442.

Sharpe, William, Portfolio Theory and Capıtal Markets. New York: McGraw-Hıl1 Book Company, 1970.

Siegel, Sidney. Nonparametric Statistics for the Social Sciences. New York: McGraw-Hy 11 Bock Company, Inc., 1956.

Theil, Henrı. Applied Economic Forecasting. Chicago: Rand McNally and Company, 1966.
"Unıformity in Accounting." Journal of Accountancy 123 (June 1964). Editorial.

Wall Street Journal (Midwest Edition). Several Issues, 1966-1972.

Wa11 Street Journal Index. Several 1ssues, 1966-1972.
White, Gary, "Discretıonary Accounting Decisions and Income Normalızation." Journal of Accounting Research 8 (Autumn 1970): 265-273.

APPENDICES

APPENDIX A
DATA GATHERING SHEETS

FIRM NAME: \qquad

Ticker Listing:----
 1-4

Card Number: 1 5
Year:-- 6,7
Industry:--.-- 8-11
Reported Primary Earnings per Share 1964:------ 12-16 (Before Extraordinary Items, if Reported) 1965:----- 17-21
1966:----- 22-26
1967:----- 27-31
1968:--- 32-36
1969:----- 37-41
1970:----- 42-46
1971:----- 47-51
1972:----- 52-56
Fiscal Year-End (Mo/Day) 57-60
Amount of Extraordinary Item (000): 61-66
Extraordinary Item per Share: 67-71
Number of Extraordinary Items Reported:- 72
Type of Extraordinary Itam:-- 73,74
Type of Extraordinary Item:-- 75,76
Type of Extraordinary Item:-- 77,78CardDate on Financial Statements:-m-.--Column
Date was on President's Letter (P) Auditor's Report (A)
or Other (0)
Ticker Listıng:---- 1-4
Card Number: $\underline{2}$ 5
Date E. I. Reported in WSJ (Mo/Day/Yr): 6-11
Day E. I. Reported $\jmath n$ WSJ ($1=$ Mon,..., $5=$ Fri):- 12
EPS Figure Reported in WSJ:
(1) NI Before EI, (2) NI, (3) Both:- 13
 14-19
Corresponding Day ($1=\mathrm{Mon}, \ldots, 5=\mathrm{Fr}$) : :- 20

APPENDIX B

FIRMS REPORTING EXTRAOKDINARY ITEMS USED IN THIS STUDY

Firm Ticker Symbol	Firm Name
AA	Aluminum Co. of America
${ }_{\text {ABT }}$	Abbott Laboratorıes
ACK	Armstrong Cork Co.
ACH	American Chain and Cable Co., Inc.
ACY	American Cyanamid Co.
ALS	Allied Stores
APX	Ampex Corp.
AVT	Avnet Inc.
BA	Boeing Co.
BAI	Basic Inc.
BDK	Black and Decker Mfg. Co.
BEC	Beckman Instruments
BFC	Buffalo Forge Co.
BIG	Eig Three Inds.
BY	Bucyrus-Erie Co.
CAX	Conrac Corp.
CNF	Consolidated Frelghtways Inc.
CTS	CTS Corp.
CUM	Cummans Engine, Inc.
CV	Commercial Solvents Corp.
CWD	Conwood Corp.
DCS	Distillers Corp. - Seagrams Ltd.
DIS	Walt Dasney Productions
DR	National Distillers \& Chemıcal
DSP	Dentoply Intl. Inc.
DSH	Dennison Mfg. Co.
EHG	Englehard Minerals \& Chemacals
FAM	Family Finance Corp.
FJQ	Fedders Corp.
FLD	Fieldcrest Mills
FMO	Federal-Mogul Corp.
GID	Giddings \& Lewis Corp.
GLR	Grolier Inc.
GNN	Great Northern Nekosa Corp.
GO	Gulf Oıl Cozf.
gPO	Grant Portland Cement Co.
GSX	General Signal Corp.
GVL	Graniteville Co.
HAY	Hays Albion Corp.
HGH	Hughes \& Hatcher Inc.
HLR	Heller (Walter E.) Intl. Corp.

APPENDIX B (continued)

Firm Ticker Symbol	Firm Name
JMD	Hammond Corporation
HNS	Hanes Corporation
HOB	Hobart Mfg. Co.
HPC	W. F. Hall Printang Co.
HTW	Houghton Mrfflin Co.
IK	Interlake, Inc.
IKN	Inmont Corp.
KMB	Kimberley-Clark Corp.
KW	Kelsey Hayes Co.
LCS	Lone Star Inds.
LKS	Lucky Stores, Inc.
NB	Milton Bradley Co.
MHP	McGraw-Hill, Inc.
MKC	Marion Laboratories
ML	Martın-Marietta Corp.
MOT	Motorola, Inc.
MRP	Mhssouri Portland Cement Co.
MS	McCrory Corp.
MUN	Munsingwear Inc.
MYG	Maytag Co.
NRT	Norton Co.
OMK	Omark Inds., Inc.
PBI	Pitney Bowes, Inc.
PCT	Papercraft Corp.
PG	Proctor and Gamble Co.
PII	Pueblo Int1. Inc.
PRD	Polarozd Corp.
PSM	Pennewalt Corp.
RAD	Rite Ald Corp.
RAH	Robins (AH) Co.
RCC	Royal Crown Cola Co.
RES	Relıable Stores Corp.
RLM	Reynolds Metal Co.
ROF	Robertshaw Controls
RVB	Revere Copper \& Brass Inc.
RXM	Richardson-Merrell, Inc.
SA.	Safeway Stores, Inc.
SBC	Stokely-Van Camp Inc.
SDP	Standard Presmed Steel Co.
SPA	Sparton Corp.
TET	Texas Eastern Transmission
TFD	Thrifty Drug Stores
TG	Texas Gulf, Inc.
TGT	Tenneco Inc.
INB	Thomas \& Betts Corp.
UFG	U.S. Freight
UMT	UMC Inds.
UNC	United Nuclear Corp.

APPENDIX B (continued)

Firm Ticker Symbol	Firm Name
UPK	United Park City Mines Co.
USG	U.S. Gypsom Co.
W	Westvaco Corp.
WHR	Whirlpool Corp.
WKT	Wayne-Gossard Corp.
WU	Western Union Corp.
Z	Woolworth (FW) Co.
ZE	Zenith Radio Corp.

APPENDIX C
data collected for firms reporting ektraordinary items

Firm Ticker	SIC Code	EPS for Years Prior to Year EI Repoited			Per Share Data for Year Exc Item(9) Reported		Codes of Reported Ext.Item(s)	$\begin{aligned} & \text { Year } \\ & 19 \end{aligned}$
					Income before	Ext Item(s)		
		3 years	2 years	1 year	Ext Item	(Net)		
AA	33	\$4.93	\$4.75	\$5.58	\$5. 20	\$-88	22,22,66	70
ABT	28	2.04	210	235	258	-. 21	69	69
ACK	25	150	126	135	122	1.03	14,14	69
ACN	35	202	242	194	1.61	-4.03	10,11,14	71
ACY	28	1.59	1.03	202	193	. 11	12	70
ALS	53	295	3.01	326	3.00	-. 44	10	69
AME	38	110	1.19	1.33	. 76	-. 56	10,11	70
Arx	36	109	. 80	1.35	134	- 21	19	70
AVT	36	1.21	1.38	1.02	. 67	-. 21	11,19	70
BA	37	384	. 47	102	1.04	. 91	71	71
BAI	32	73	1.11	62	. 86	. 30	53	68
BDK	35	1.58	184	2.03	215	-. 11	30	68
BEC	38	144	181	123	134	-. 09	30	69
BFC	35	2.40	230	2.44	274	. 16	30	70
BIG	28	1.42	149	160	174	-. 09	18	70
BY	35	1.35	2.26	251	1.86	15	72	67
CAX	36	1.42	216	2.22	125	-. 16	19	68
CNF	42	1.70	220	202	2.41	. 11	14	68
CTS	36	. 97	138	215	1.78	. 09	14	67
CUM	37	2.87	3.05	3.27	. 62	. 11	50	67
CV	28	1.42	. 46	68	. 25	-2. 18	11.14.20	70
CWD	28	317	317	336	3.22	. 52	12	70
DCS	20	2.69	2.89	304	323	52	16,30	70
DIS	78	1.81	287	308	252	. 22	74	67
DR	20	1.55	161	126	131	-. 32	21	69
DSP	38	1.90	2.22	232	2.42	. 48	14	67
DSN	26	2.22	2.17	2.12	143	. 10	14	69
ENG	50	1.15	125	1.30	1.09	-. 12	16	71
FAM	61	1.70	1.70	1.17	2.04	-. 14	20	71
FJQ	34	147	1.59	. 55	2.14	-. 09	18	67
FLD	22	2.70	228	221	2.22	. 77	14	71
FMO	37	2.44	250	210	2.32	-. 18	10,11	71
GID	35	1.72	1.34	82	- 56	-. 42	10,12	70
CLR	27	3.40	401	4.40	3.73	-. 48	30	67
CNN	26	387	424	460	4.56	. 05	10,60	69
co	29	3.61	412	4.87	548	. 10	12,30	67
Gro	32	1,17	. 92	. 93	. 55	-1.28	10	69
GSX	38	3.05	3.35	3.51	3.63	-. 95	11,14,18	68
GVI	22	366	3.91	3.38	. 97	. 43	13	68
HAY	37	2.18	2.20	2.01	1.47	-. 32	17,21	70
HILR	61	1.22	1.28	141	1.60	. 12	14,14	70
HAD	39	1.26	1.47	130	68	-. 83	11,11	71
HNS	23	1.95	2.09	103	1.33	. 31	13	70
HOB	35	1.88	2.23	2.11	2.09	. 49	12	68
HPG	27	3.26	3.29	3.06	338	-. 53	14	69
HTN	27	. 96	. 84	. 92	1,08	-. 28	14,65	10

APPENDIX C (continued)

Pirg Ticker	SIC Code	EPS for $\frac{50 \text { Year }}{3 \text { years }}$	$\begin{aligned} & \text { Years Pry } \\ & \text { EL Repot } \\ & \hline 2 \text { years } \end{aligned}$		Per Share Dut $\begin{aligned} & \frac{\text { Exc } \operatorname{Item}(s)}{\text { Income betore }} \\ & \text { Ext Item } \end{aligned}$	Eor Year Enorted Item(s) (Net)	Codes of Reported Ext.Item(s)	$\begin{aligned} & \text { Year } \\ & 19 \end{aligned}$
IK	33	3.69	3.15	2.80	343	1.13	12,14,21	69
IKN	28	166	1.78	1.12	- 52	-1.85	10,11,14,20	70
KM佃	26	197	231	1.64	135	-1.81	14,14,21	71
KW	37	322	374	3.46	2.17	-. 44	18	70
LCE	32	1.73	177	165	1.42	-2.02	10	67
LKS	54	73	109	1.29	168	. 15	12	70
FB	39	1.58	114	1.32	147	-. 05	14	70
M1P	27	93	1.29	130	1.23	. 06	13,30	67
MKC	28	. 74	1.03	1.30	1.55	-. 22	14,70	71
ML	37	135	1.49	192	1.64	. 26	14	67
MOT	36	1.54	230	274	1.93	-. 11	11	70
MRP	32	2.34	172	261	2.27	-. 19	23	69
MS	56	1.70	181	227	2.32	18	12,14	69
MN	23	3.28	3.12	3.13	239	. 17	13,14	67
MKG	36	114	220	127	1.57	02	11	68
NRT	32	330	3.32	2.14	272	. 32	16	68
OMK	35	125	1.65	1.43	. 97	-. 07	11,20,64	71
PBI	35	125	128	. 91	87	-. 03	10,11	71
PCT	26	. 69	. 86	1.01	100	-. 05	22	67
PG	28	3.06	3.47	408	430	. 46	14	68
PII	54	95	1.43	163	1.30	-. 30	12,63	71
PRD	38	1.51	181	1.86	1.90	. 04	51	69
PSM	28	258	246	181	1.20	-. 04	14	70
RAD	59	. 55	74	. 98	128	. 04	16	71
RAH	28	1.08	119	124	1.55	-. 05	14	71
RCC	20	95	. 96	. 93	. 61	-. 30	14,69	69
RES	57	1.25	1.22	101	. 93	. 09	13	71
RLM	33	1.96	2.93	361	2.61	. 29	12	67
ROF	38	1.26	175	2.18	160	-. 25	10,14	70
RVB	33	1.68	2.10	403	3,47	. 17	14,18,62	67
RXPM	28	2.13	241	2.71	277	-. 23	14,19	71
SA	54	2.35	200	2.16	201	.13	12	69
SBC	20	2.58	2.12	1.46	1.26	-. 20	69	70
SDP	34	1.60	1.70	73	-1.10	-1.02	10,14,22	70
SPA	36	-. 10	1.87	2.00	1.59	-. 46	22	70
TET	49	1.49	158	172	1.94	. 11	16	67
TFD	59	1.36	1.39	1.47	1.60	. 18	12	70
TG	14	2.36	2.02	1.51	. 83	-. 15	13	71
TCT	99	1.70	1.83	1.95	2.21	. 18	12	68
THB	36	1.98	213	1.88	2.11	-. 13	11	71
UFG	47	1.62	2.04	2.10	2.01	. 28	12	68
UMT	35	. 90	1.12	1.35	1.31	. 22	12	35
UNC	10	1.23	1.01	. 31	73	-. 17	21	67
UFK	10	. 04	-. 08	. 01	. 05	. 03	50	71
USG	32	3.65	3.90	346	2.20	.31	12,30	70
W	26	199	2.08	1.62	. 46	-. 20	10,11,15,16	71
WHR	36	2.86	3.10	3.90	3.01	-1.18	68	70
WKT	23	1.61	2.38	160	1.04	-. 11	13	70
WU	48	2.29	2.30	2.46	1.61	. 79	12	67
2	53	2.31	2.32	2.52	2.50	-. 19	14	71
4 E	36	2.50	2.08	1.30	1.65	.32	19,40	71

APPENDIX D

EXTRAORDINARY ITEMS REPORTED BY TYPE AND YEAR

Code for Extraordinary Item	1967	1968	1969	1970	1971	Total
10	1		3	5	4	13
11		2		5	8	15
12	4	3	3	6	1	17
13	2	1		2	2	7
14	5	3	7	9	8	32
15					1	1
16	1	1		1	3	6
17				1		1
18	2	1		2		5
19		1		2	2	5
20				2	2	4
21	1		2	1	1	5
22	1			5		6
23		1				1
30	3	1	1	3		8
40					1	1
50	1	1			1	3
60			1			1
62	1					1
63					1	1
64					1	1
65				1		1
66				1		1
67					1	1
68				1		1
69			2	1.		3
70					1	1
71						1
72	1					1
74	1	-	-	-	-	1
Total	$\underline{24}$	$\underline{14}$	$\underline{21}$	48	$\underline{39}$	$\underline{146}$
No. of Firms	19	12	15	31	21	98

APPENDIX E

CODES USED FOR EXTRAORDINARY ITEMS

SALE, DISPOSAL, OR ABANDONNENT OF ASSETS
10 Cost of plant, mine, store, division, or joint venture closing
11 discontinued operations
12 securitles, investments, or jount ventures
13 fjxed assets
14 subsidiary, division, plant, or store
15 involuntary conversion from flood, fire, hurricane, or accident
16 land, mane, well, or timberland
17 sale of product line
18 relocation costs
19 consolidation of operations

ADJUSTMENTS IN VAL_UATION BASIS
20 investments
21 fixed assets
22 provision of reserve for loss on sale of segment of business
23 Intangibles

CURRENCY REVALUATION
currency revaluation

RESULTS OF LITIGATION
40 gains or losses from litigation

TAX ITEMS
50 operating loss carry-forward
51 tax adjustment item previously capitalızed that should have been expensed

MISCELLANEOUS
60 partial Inquidation of LIFO inventory
61 the furm's share of jointly owned company's or subsidiary's extraordinary item
62 unexpected start-up costs
63 investments in and advances to affiliated firm
64 payment of a luability at less than face value
65 operating results prior to the sale or discontinuance of a segment of the business
66 estimated cost of completing a contract
67 provision for loss on the abandonment of leased property
69 costs involved with the cyclamate ban
70 costs involved wath the wathdrawal of a tender offer or acquisition
71 recovery of cost share resulting from SST cancellation
72 forward sale of forelgn currency
73 write off interest pald on money borrowed and advanced to a firm (Boeing) in connection with the purchase of three 747^{\prime} s when order cancelled. Interest was to be capitalized.
74 life insurance proceeds in excess of cash surrender value

APPENDIX F

Firm Ticker Symbol	Firm Name
APD	Air Products \& Chemicals, Inc.
ARO	Aro Corp.
ARV	Arvin Inds. Inc.
AVP	Avon Products, Inc.
AXO	Akzons Inc.
BBL	Blue Bell, Inc.
BCR	Bard (CR) Inc.
BDX	Becton Dickinson \& Co.
BER	Bearings, Inc.
BOU	Bourns Inc.
BRF	Borman's Inc.
BUR	Burlington Inds. Inc.
CAT	Caterpillar Tractor Co.
CCF	Cook United Inc.
CCK	Crown Cork \& Seal Co., Inc.
CDD	Cunningham Drug Stores, Inc.
CLU	Cluett, Peabody * Co., Inc.
CNK	Crompton \& Knowles Corp.
CPS	Columbia Pictures Inds. Inc.
CKF	Copeland Corp.
CRI	Collins Radio Co.
CRS	Carpenter Technology
CSK	Chesapeake Corp. of Va.
DFC	Dial Financial Corp
DML	Dan River Inc.
DNY	R.R.Donnelley Sons Co.
EAF	Emery Air Freight Corp.
EK	Eastman Kodak Co.
EOS	Edison Brothers Stores, Inc.
FBG	Faberge Corp.
FBO	Federal Paper Board Co.
FCF	First Charter Financıal
FLT	Filtrol Corp. Del.
FOX	Foxboro Co.
FT	Freeport Minerals Co.
GAT	Gateway Inds. Inc.
GDC	Gardner-Denver Co.
GE	General Electric Co.
GLW	Corning Glass Works
GOR	Gordon Jewelry Corp.
GPC	Genuine Parts Co.
GQ	Grumman Corp.

Firm Ticker Symbol	Firm Name
HAL	Halliburton Co.
HIS	Siegel (Henry I) Co. Inc.
HZ	Hazeltine Corp.
IBM	International Business Machines Corp.
IR	Ingersoll-Rand Co.
JNJ	Johnson \& Johnson
KEL	Keller Inds. Inc.
KG	Kresge (SS) Co.
KMT	Kennametal Inc.
KRA	Kraftco Corp.
LDN	Leeds \& Northrup Co.
L2	Lubizol Corp.
MDC	Maryland Cup Corp.
MF	Marshall Field \& Co.
MFS	Mountann Fuel Supply Co.
MMM	Minnesota Minang \& Mfg. Co.
MRS	Morse Shoe Inc.
MRY	Mallory (PR) \& Co.
N	International Nackel Co. of Canada
NS	National Steel Corp.
NSC	National Starch \& Chemıcal
NSD	National Standard Co.
NSW	Northwestern Steel \& Wire Co.
NWA	Northwest Airlines Inc.
OVT	Overnite Trans. Co.
PAC	Pacific Telephone \& Telegraph Co.
PH	Parker-Hannifin Corp.
PDN	Perkin Elmer Corp.
PRN	Puerto Rıcan Cement Co., Inc.
PTC	Pacific Tin Consolidated Corp.
RG	Rheingold Corp.
RHR	Rohr Inds.
RTX	Riegel Textile Corp.
SBI	Sterchi Brothers Stores Inc.
SCO	Scovill Manufacturtng Co.
SCX	Starrett (L.S.) Co.
SFN	Scott Fore.inan
SIM	Simmons Co.
SJM	Smucker (J.M.) Co.
SKC	Skjl1 Curp.
SKL	Saith Kline \& French Lab
SNK	Swank, Inc.
SRL	Searle (G.D.) * Co.
STO	Stone Container Corp.
suo	Shell Oil Co.

APPENDIX F (continued)

Firm Ticker Symbol.	Firm Name
SY	Sperry Rand Corp.
T	American Telephone \& Telegraph Co.
TRW	TRW Inc.
TXW	Texas Instruments, Inc.
UCC	Unıon Camp Corp.
VFC	V.F. Corp.
WIN	Winn-Dixie Stores, Inc.
WJ	Watkins-Johnson Co.
WPM	West Point-Pepperell Mfg.
WSS	Washington Steel Corp.
X	U.S. Steel Corp.

APPENDIX G

data collected for firms not reporting extraordinary items

Firm Ticker	$\begin{aligned} & \text { SIC } \\ & \text { Code } \end{aligned}$	EPS for to Year 3 years	Years Prior of Interest 2 years	1 year	EPS for Year of Interest	Year
APD	28	2.03	2.15	2.35	2.60	70
ARO	35	2.25	2.01	1.92	1.92	70
ARV	38	1.88	2.48	2.09	. 98	71
AVP	28	1.24	1.46	1.72	1.89	71
AXO	28	2.91	3.60	2.01	3.67	68
BBL	23	2.25	2.50	3.13	3.81	70
BCR	28	. 93	. 91	1.20	1.35	71
BDX	28	. 77	. 86	1.01	1.08	70
BER	37	3.03	3.20	3.76	4.10	70
BOU	36	. 91	1.12	1.02	1.24	68
BRF	54	1.67	1.20	1.52	1.55	70
BUR	22	3.12	3.01	2.73	1.52	71
CAT	35	2.80	2.64	1.87	2.14	68
CCF	54	1.86	2.26	2.62	1.91	71
CCK	32	3.55	4.02	4.53	5.03	68
CDD	59	. 92	. 93	1.10	-. 70	70
CLU	23	1.37	1.66	1.61	1.70	67
CNK	35	1.13	1.46	1.69	1.48	70
CPS	78	1.48	. 93	1.05	2.77	67
CRF	34	1.62	2.09	2.54	2.64	67
CRI	36	1.08	2.04	3.36	4.42	67
CRS	33	2.59	3.46	3.67	2.80	68
CSK	26	3.59	2.63	2.35	2.43	69
DFC	61	1.12	. 89	1.07	1.38	71
DML	22	2.55	2.73	1.40	1.34	68
DNY	27	1.14	1.07	1.10	1.19	70
EAF	47	. 74	. 76	. 88	1.13	68
EK	38	2.19	2.33	2.49	2.50	70
EOS	56	2.62	2.15	2.03	2.40	72
FBG	28	1.68	1.50	1.67	. 41	70
FBO	26	2.45	2.26	2.11	2.47	72
FCF	61	1.22	1.63	2.54	2.50	70
FLT	28	. 66	1.10	1.12	1.46	70
FOX	38	2.24	. 58	1.05	1.31	70
FT	14	2.61	1.84	1.02	. 85	71
GAT	37	1.60	1.06	. 40	. 80	71
GDC	35	2.43	2.85	2.86	2.54	71
GDC	35	2.43	2.85	2.86	2.54	71
GE	36	4.01	3.95	3.07	3.63	70
GLW	32	7.90	7.25	6.79	7.26	69
GOR	59	. 99	1.10	. 94	1.09	71
GPC	50	1.24	1.40	1.73	2.14	71

APPENDIX G (continued)

Firm Ticker	SIC Code	EPS for to Year 3 years	Years Prior of Interest 2 years	1 year	EPS for Year of Interest	Year
GQ	. 37	1.55	3.03	3.95	3.04	67
HAL	35	2.68	3.15	2.69	3.23	71
HIS	23	1.75	2.07	2.36	1.44	67
HZ	36	. 29	. 40	1.30	1.63	68
IBM	35	4.40	4.71	5.81	7.71	68
IR	35	2.51	3.31	3.84	3.82	67
JNJ	28	2.02	2.27	2.73	3.21	69
KEL	34	1.86	2.63	1.50	1.45	70
KG	53	1.39	1.57	1.86	2.56	72
KMT	33	2.64	3.36	2.10	2.00	69
KRA	20	2.55	2.65	2.67	2.69	69
LDN	36	1.80	1.60	1.47	1.62	70
LZ	28	1.26	1.67	1.79	2.17	70
MDC	26	1.58	1.89	2.17	2.21	67
MF	53	3.66	3.88	4.10	3.98	69
MFS	49	2.48	2.40	2.08	2.06	67
MMM	38	1.92	2.18	2.59	2.74	67
MRS	56	1.60	1.95	2.14	2.51	68
MRY	36	3.90	4.21	3.91	2.62	70
N	10	1.93	1.56	2.80	1.26	71
NS	33	5.41	5.55	4.55	4.40	67
NSC	20	1.35	1.54	1.37	1.54	70
NSD	33	1.50	1.61	1.69	1.84	69
NSW	33	1.95	3.02	4.24	5.88	67
NWA	45	4.99	5.81	6.42	5.47	68
OVT	42	2.26	2.06	2.73	2.52	68
PAC	48	1.38	1.30	1.30	1.26	67
PH	35	3.00	3.51	3.15	2.13	71
PKN	38	. 66	. 73	. 84	. 94	68
PRN	32	1.98	2.20	2.34	2.24	67
PTC	10	1.25	1.51	1.51	1.10	67
RG	20	1.69	-. 07	1.42	1.72	69
RHR	37	. 87	1.61	1.97	. 90	67
RTX	22	2.93	3.02	1.77	. 47	69
SBI	57	. 93	. 97	. 91	. 75	71
SCO	36	1.79	1.96	1.54	1.77	71
SCX	39	2.05	2.09	1.86	1.94	70
SFN	27	1.35	1.55	1.10	1.17	69
SIM	25	2.75	2.49	3.02	3.27	69
SJM	20	1.58	1.61	1.65	1.39	70
SKC	35	1.53	1.81	2.12	1.42	67
SKL	28	2.92	2.81	3.01	3.09	71
SNK	39	1.92	1.68	1.42	1.51	70

APPENDIX G (continued)

Firm Ticker	SIC Code	EPS for to Year 3 years	Years Prior of Interest 2 years	1 year	EPS for Year of Interest	Year
SRL	28	1.93	1.96	2.08	2.32	70
STO	26	1.20	1.08	. 72	. 45	71
SUO	29	3.27	3.85	4.19	4.66	67
SY	36	1.94	2.26	2.37	2.11	71
T	48	3.24	3.41	3.69	3.79	67
TRW	37	2.13	2.36	2.40	1.92	71
TXN	36	2.11	2.41	3.06	2.71	70
UCC	26	1.91	1.62	1.76	2.03	69
VFC	23	1.97	2.08	2.22	2.47	71
WIN	54	1.95	2.11	2.18	2.60	71
WJ	36	1.01	. 66	. 97	1.09	71
WPM	22	4.57	4.15	3.11	2.55	69
WSS	33	1.67	1.49	1.43	2.01	70
X	33	3.19	4.69	4.01	2.72	70

APPENDIX H

INDUSTRY ASSOCIATED WIIH TWu-DIGIT STANDARD INDUS'RIAL CODE (1972)

Code Industry

Mining
10 Metal Mining
14 Mining and quarrying of nonmetallic metals, except fuels

Manufacturing

$20 \quad$ Food and kindred products
22 Textile manufacturers
23 Appare1 and other finlshed products made from fabrics and similar materials
25 Furniture and fixtures
26 Paper and allied products
27 Printing, publıshing, and allıed industries
28 Chemicals and allied products
29 Petroleum refining and related industries
32 Stone, clay, glass, and concrete products
33 Primary metal industries
34 Fabricated metal products, except machinery and transportation equipment
35 Machınery, except electrical
36 Electrical and electronic machinery, equipment, and supplies
37 Transportation equipment
38 Measuring, analyzing, and controlling instruments; photographic, medical and optical goods; watches and clocks
39 Miscellaneous manufacturing industries
Transportation, conmunications, electric, gas and sanıtary services
42 Local and suburban transit and interurban highway
passenger transportation
Water transportation
Transportation services
Conmunication
Electric, gas, dnd sanitary services
Wholesale trade
53 General merchandise stores
$54 \quad$ Food stores
56 Apparel and accessory stores
57 Furniture, home furnishings, and equipment stores
59 Miscellaneous retail
Finance, insurance, and real estate
61 Banking
Services
78 Motion pictures
Nonclassifiable establishments
99 Nonclassıfiable establishments

APPENDIX J

REJECTED INCOME EXPECTATION MODELS

Three earnings expectation models that have been used in previous studzes are:

Model 5: $\mathrm{E}\left(\mathrm{X}_{\mathrm{t}}\right)=\mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{Y}$,

Model 6: $E\left(X_{t}\right)=a_{o}+b_{o} X_{m t}$,
Model 7: $E\left(X_{t}\right)=(1 / N)\left({ }_{j=1}^{N} X_{t-j}\right)$,
where

$$
\begin{aligned}
X_{\mathrm{mt}}= & a \text { market-wide index of earnings in period } t \text { (derined } \\
& \text { as Standard and Poor's Industrial Arerage Earnings } \\
& \text { per Shaıe), } \\
Y= & \text { earnings for the three years prior to year } t, \\
\mathrm{a}_{\mathrm{o}}, \mathrm{~b}_{\mathrm{o}}= & \text { intercept and slope reflecting the linear relationship } \\
& \text { between } \mathrm{X}_{\mathrm{t}} \text { and } \mathrm{X}_{\mathrm{mt}}, \\
\mathrm{a}_{1}, \mathrm{~b}_{1}= & \text { intercept and slope reflecting the Inear relation- } \\
& \text { ship between } X_{t} \text { and } Y .
\end{aligned}
$$

Model 5 was used by Cummings (1973) as one of his models. It calculates earnings as a linear trend based on the earnings for the three years prior to year t. It was not used as an expectation model in this research for two reasons. (1) It uses only three data points in calculating the regression; this is not nearly enough to establish a meaningful serial relationsh1p for the firm's earnings; (2) Intuitively, one would question the necessity for the model; if there is a linear
trend in a firm's earnings it will be captured in Model 1; if there is no linear trend it is not an appropriate model. In fact, 92 of the EL group firms and 93 of the control group firms would have been classified into the same portfolios using Model 5 as they were using Model 1.

Model 6 calculates earnings based on the linear regression with Standard and Poors (S\&P) Industrial Average Earnings per Share. The values for a_{0} and b_{0} would be calculated for each fyrm by regressing the firm's earnings for each of the three years prior to the year of interest ggainst the corresponding S\&P Industrial Average Earnings per Share for each year. This model was used by Ball and Brown (1968) and a form of the model was used by Beaver and Dukes (1972).

The model was not used in this study because, like Model 5, there are only three data points for construction of the coefficients in the regression (Ball and Brown used at least twenty points in their 1968 study). Further, one is led to question whether this expectation model is valid to use in comparison with the other models being used since the model predicts earnings based on the index for the year earnings are being forecasted, hence, it is not forecastang based on comparable data with the other models.

Model 7 predicts earnings as the simple average of the earnings from the past three years. This was one of the models used by Beaver and Dukes (1972) although they did not use it in their follow-up research (Beaver and Dukes, 1973). The model was not used in this research because of 1 ts lack of intuituve appeal and because of the similarity between the model and model 2 , which forecasts earnings based on a pure mean reverting process.

APPENDIX J
EARNINGS FORECASTS AND PORTFOLIO CLASSIFICATION BY MODEL FOR FIRMS REPORTING EXTRAORDINARY ITEMS

Firm Ticker	Mode1			
	1	2	3	4
AA	$5.90 / 4$	$5.25 / 4$	$5.97 / 4$	$5.72 / 4$
$A B T$	$2.50 / 5$	$2.19 / 1$	$2.52 / 5$	$2.46 / 5$
ACK	$1.27 / 2$	$1.42 / 2$	$1.29 / 2$	$1.23 / 2$
ACN	$1.90 / 4$	$1.98 / 4$	$1.94 / 4$	$2.04 / 4$
ACY	$2.23 / 4$	$1.80 / 1$	$2.28 / 4$	$2.26 / 4$
ALS	$3.41 / 4$	$3.10 / 4$	$3.43 / 4$	$3.37 / 4$
AME	$1.44 / 4$	$1.21 / 4$	$1.46 / 4$	$1.42 / 4$
APX	$1.48 / 4$	$1.22 / 5$	$1.63 / 4$	$1.34 / 8$
AVT	$0.92 / 4$	$1.11 / 4$	$0.96 / 4$	$1.02 / 4$
BA	-0.39 / 1	$2.43 / 4$	$1.17 / 2$	-1.05 / 1
BAI	$0.56 / 1$	$0.67 / 1$	$0.64 / 1$	$0.72 / 1$
BDK	$2.25 / 4$	$1.80 / 1$	$2.30 / 4$	$2.25 / 4$
BEC	$1.12 / 1$	$1.33 / 5$	1.19 / 1	1.29 / 5
BFC	$2.46 / 1$	$2.42 / 1$	$2.46 / 1$	$2.42 / 1$
BIG	1.69 / 5	1.51/1	$1.70 / 5$	$1.68 / 5$
BY	$3.09 / 4$	$1.93 / 2$	$3.49 / 4$	$3.20 / 4$
CAX	$2.62 / 4$	$1.82 / 4$	$2.83 / 4$	$2.73 / 4$
CNF	$2.18 / 1$	1.86/1	$2.23 / 1$	$2.29 / 1$
CTS	2.74 / 4	$1.56 / 1$	$3.70 / 4$	$2.68 / 4$
CUM	$3.47 / 4$	$3.07 / 4$	$3.49 / 4$	$3.46 / 4$
CV	$0.31 / 4$	1.05/4	0.61/4	$0.11 / 5$
CWD	3.45 / 2	$3.26 / 2$	$3.46 / 2$	$3.41 / 2$
DCS	$3.21 / 1$	$2.86 / 1$	$3.23 / 8$	$3.21 / 1$
DIS	$3.71 / 4$	2.44 / 1	$4.09 / 4$	$3.34 / 4$
DR	1.11 / 5	$1.40 / 4$	$1.15 / 5$	1.19 / 5
DSP	$2.53 / 2$	$2.11 / 1$	$2.57 / 2$	$2.56 / 2$
DSN	$2.07 / 4$	$2.17 / 4$	$2.07 / 4$	$2.07 / 4$
ENG	$1.37 / 4$	$1.22 / 4$	$1.38 / 4$	$1.37 / 4$
FAM	$0.90 / 7$	$1.43 / 4$	$0.99 / 5$	$1.00 / 5$
FJQ	$0.09 / 1$	$1.01 / 1$	0.39 / 1	$0.28 / 1$
FLD	$1.96 / 1$	$2.45 / 2$	$2.80 / 1$	$1.91 / 1$
FMD	$1.93 / 5$	$2.27 / 5$	$1.96 / 5$	$2.00 / 5$
GID	$0.37 / 4$	1.27/4	$0.97 / 4$	$0.39 / 4$
GLR	4.90 / 4	$3.90 / 4$	$5.01 / 4$	$4.93 / 4$
GNN	$4.96 / 4$	$4.25 / 1$	$5.02 / 4$	$4.95 / 4$
GO	5.40 / 1	$4.34 / 1$	$5.51 / 2$	$5.32 / 1$
GPO	$0.81 / 4$	$1.05 / 4$	$0.84 / 4$	$0.76 / 4$
GSX	$3.74 / 4$	$3.28 / 5$	$3.77 / 4$	$3.76 / 4$

APPEIDDIX J (continued)

Firm Ticker	Mode1			
	1	2	3	4
GVL	$3.24 / 4$	$3.52 / 4$	$3.23 / 4$	$3.37 / 4$
HAY	$1.92 / 4$	$2.09 / 4$	$1.93 / 4$	$1.97 / 4$
HGH	$1.29 / 4$	$1.27 / 4$	$1.30 / 4$	$1.35 / 4$
HLR	$1.50 / 1$	$1.31 / 1$	$1.52 / 1$	1.48 / 1
HMD	$1.32 / 4$	1.28/4	$1.33 / 4$	$1.38 / 4$
GNS	$0.57 / 1$	$1.49 / 2$	0.81/2	$0.77 / 1$
HOB	$2.22 / 2$	$1.99 / 1$	$2.25 / 2$	$2.29 / 2$
HPG	$2.96 / 5$	3.16 / 5	$2.97 / 5$	$3.00 / 5$
HTN	$0.90 / 5$	$0.94 / 5$	$0.91 / 5$	$0.86 / 5$
IK	$2.36 / 1$	3.24/1	$2.44 / 1$	$2.33 / 1$
IKN	$0.85 / 4$	$1.39 / 4$	$0.95 / 4$	$0.98 / 4$
KMR	$1.47 / 4$	$1.80 / 4$	$1.54 / 4$	$1.65 / 4$
KW	$3.58 / 4$	$3.34 / 4$	$3.61 / 4$	$3.71 / 4$
LCE	$1.61 / 4$	1.69 / 4	$1.61 / 4$	1.63 / 4
LKS	1.57/1	$1.01 / 1$	$1.23 / 2$	1.59/1
MB	$1.19 / 1$	$1.45 / 5$	$1.24 / 1$	$1.08 / 1$
MHP	$1.48 / 4$	1.11 / 1	$1.36 / 4$	$1.53 / 4$
MKC	$1.59 / 4$	$1.02 / 1$	$1.73 / 4$	$1.58 / 4$
ML	$2.20 / 4$	$1.63 / 1$	$2.30 / 4$	$2.14 / 4$
MOT	$3.34 / 4$	$2.14 / 4$	$3.68 / 4$	$3.39 / 4$
MRP	$2.74 / 4$	$2.47 / 4$	$2.94 / 4$	$2.48 / 4$
MS	$2.55 / 4$	1.98 / 1	$2.63 / 4$	$2.48 / 2$
MUN	$3.05 / 4$	$3.20 / 4$	$3.06 / 4$	$3.03 / 4$
MYG	$1.33 / 1$	$1.20 / 1$	$1.34 / 1$	1.32/1
NRT	$1.56 / 1$	$2.72 / 8$	$1.77 / 1$	$1.76 / 1$
OMK	$1.52 / 4$	$1.34 / 4$	$1.56 / 4$	$1.62 / 4$
PBI	$0.74 / 1$	$1.08 / 4$	$0.79 / 1$	$0.80 / 1$
PCT	$1.17 / 4$	0.85 / 1	$1.22 / 4$	$1.17 / 4$
PG	$4.59 / 2$	$3.57 / 1$	$4.78 / 2$	$4.55 / 2$
PII	$1.97 / 4$	$1.29 / 5$	$2.16 / 4$	$2.01 / 4$
PRD	$2.03 / 4$	$1.68 / 1$	$2.07 / 4$	$2.06 / 4$
PSM	$1.42 / 4$	$2.19 / 4$	$1.53 / 4$	$1.52 / 4$
RAD	$1.19 / 1$	$0.76 / 1$	$1.31 / 2$	$1.17 / 1$
RAH	$1.32 / 1$	$1.16 / 1$	$1.33 / 1$	$1.33 / 1$
RCC	$0.92 / 4$	$0.94 / 4$	$0.92 / 4$	$0.89 / 4$
RES	$0.89 / 1$	$1.13 / 4$	$0.91 / 4$	$0.92 / 1$
RLM	$4.43 / 4$	$2.76 / 2$	$4.92 / 4$	4.47/4
ROF	$2.64 / 4$	$1.72 / 4$	$2.82 / 4$	$2.65 / 4$
RVB	$5.20 / 4$	$2.85 / 1$	$6.39 / 4$	$4.94 / 4$
RXM	$3.00 / 4$	2.42 / 1	$3.00 / 4$	$2.99 / 4$
SA	$2.06 / 2$	$2.25 / 4$	$2.09 / 2$	$1.99 / 1$
SBC	$0.90 / 1$	$2.02 / 4$	$1.10 / 5$	$0.93 / 1$

APPENDIX J (continued)

Firm Ticker	Mode1			
	1	2	3	4
SDP	$0.29 / 4$	$1.16 / 4$	$0.44 / 4$	$0.48 / 4$
SPA	$3.05 / 4$	$0.95 / 1$	-17.63/1	$3.36 / 4$
TET	$1.83 / 1$	$1.60 / 1$	$1.85 / 1$	$1.81 / 1$
TFD	$1.52 / 1$	1.41 / 1	$1.53 / 1$	$1.50 / 1$
TG	$1.08 / 4$	$1.93 / 4$	$1.21 / 4$	$1.12 / 4$
TGT	$2.07 / 1$	$1.82 / 1$	$2.09 / 1$	$2.08 / 1$
TNB	$1.83 / 1$	$1.93 / 1$	$1.84 / 1$	1.89 / 1
UFG	$2.34 / 4$	$1.86 / 1$	$2.40 / 4$	$2.40 / 4$
UMTP	$1.57 / 4$	$1.12 / 1$	$1.65 / 4$	$1.56 / 4$
UNC	-0.15/1	$0.77 / 4$	$0.17 / 1$	-0.07/1
UPK	$0.00 / 1$	$0.02 / 1$	-0.01 / 1	-0.03 / 1
USG	$3.36 / 4$	$3.55 / 4$	$3.38 / 4$	$3.49 / 4$
W	$1.43 / 4$	$1.80 / 4$	$1.48 / 4$	$1.53 / 4$
WHR	$4.42 / 4$	$3.38 / 4$	$4.57 / 4$	$4.32 / 4$
WKT	$1.59 / 4$	$1.60 / 4$	$1.73 / 4$	$1.86 / 4$
WU	$2.54 / 4$	$2.37 / 2$	$2.55 / 4$	$2.51 / 4$
2	$2.62 / 4$	$2.41 / 5$	$2.63 / 4$	$2.58 / 4$
ZE	$0.70 / 1$	$1.90 / 2$	$4.95 / 1$	$0.76 / 1$

APPENDIX K

EARNINGS FORECASTS AND PORTFOLIO CLASSIFICATION BY MODEL FOR FIRMS NOT REPORTING EXTRAORDINARY ITEMS

Firm Ticker	Mode1			
	1	2	3	4
APD	$2.51 / 3$	2.19 / 3	$2.33 / 3$	2.49 / 3
ARO	1.75 / 6	$2.08 / 6$	1.77 / 6	1.74 / 6
ARV	$2.19 / 6$	$1.98 / 6$	$2.26 / 6$	$2.35 / 6$
AVP	$1.96 / 6$	$1.48 / 3$	$2.43 / 6$	1.95 / 6
AXO	$1.56 / 3$	$2.46 / 3$	$1.80 / 3$	$1.94 / 3$
BBB	$3.57 / 3$	$2.69 / 3$	$3.70 / 3$	$3.50 / 3$
CR	$1.33 / 3$	$1.06 / 3$	$1.38 / 6$	$1.27 / 3$
BDX	$1.13 / 6$	0.89 / 3	$1.16 / 6$	1.12 / 6
BEF	$4.12 / 6$	$3.39 / 3$	$4.17 / 6$	$4.05 / 3$
BOU	$1.07 / 3$	$0.96 / 3$	$1.00 / 3$	$1.11 / 3$
BRF	1.44 / 3	1.59 / 6	$1.52 / 3$	$1.32 / 3$
BUR	$2.53 / 6$	$2.92 / 6$	$2.55 / 6$	$2.57 / 6$
CAT	$1.40 / 3$	$2.33 / 6$	$1.54 / 3$	$1.51 / 3$
CCF	$3.00 / 6$	$2.24 / 6$	$3.11 / 6$	$3.00 / 6$
CCK	$5.02 / 3$	$4.04 / 3$	$5.12 / 6$	$5.01 / 3$
CDD	1.19 / 6	1.01/6	$1.21 / 6$	1.16 / 6
CLU	1.73 / 6	1.49 / 3	1.76 / 6	1.78 / 6
CNK	$1.97 / 6$	$1.41 / 3$	$2.07 / 6$	$1.98 / 6$
CPS	$0.83 / 3$	$1.26 / 3$	$0.92 / 3$	$0.73 / 3$
CRF	$3.00 / 6$	$2.08 / 3$	$3.18 / 6$	$3.00 / 6$
CRI	$4.50 / 6$	$2.22 / 3$	$5.94 / 6$	$4.44 / 6$
CRF	$4.21 / 6$	$3.13 / 6$	$4.40 / 6$	$4.32 / 6$
CSK	1.73 / 3	2.97 / 6	$2.91 / 3$	$1.61 / 3$
DFC	$1.04 / 3$	$1.09 / 3$	$1.07 / 3$	$0.98 / 3$
DML	$0.82 / 3$	$1.97 / 6$	$1.11 / 3$	$1.08 / 3$
DNY	$1.08 / 3$	$1.12 / 3$	$1.48 / 3$	$1.06 / 3$
EAF	$0.95 / 3$	$0.81 / 3$	$0.96 / 3$	$0.93 / 3$
EK	$2.64 / 6$	$2.34 / 3$	$2.66 / 3$	2.63/6
EDS	1.73 / 3	$2.32 / 3$	1.79 / 3	$1.68 / 3$
FBG	$1.66 / 6$	$1.67 / 6$	$1.68 / 6$	$1.61 / 6$
FBO	$1.94 / 3$	$2.28 / 3$	$1.96 / 3$	$1.93 / 3$
FCF	3.20 / 6	$1.88 / 3$	$3.68 / 6$	3.11 / 6
FLT	$1.35 / 3$	$0.89 / 3$	$1.50 / 6$	$1.42 / 3$
FOX	$0.45 / 3$	$1.64 / 6$	$1.08 / 3$	$0.11 / 3$
FT	$0.22 / 3$	$1.81 / 6$	$0.64 / 3$	$0.24 / 3$
GAT	-0.20/3	$1.00 / 6$	$0.21 / 3$	-0.18/3
GDC	$3.07 / 6$	$2.64 / 6$	$3.11 / 6$	$3.13 / 6$
GE	$2.60 / 3$	$3.54 / 3$	2.71 / 3	2.73 / 3
GLW	$6.23 / 3$	$7.34 / 6$	$6.30 / 3$	$6.21 / 3$

APPENDIX K (continued)

Firm Ticker	Model			
	1	2	3	4
GOR	0.91 / 3	0.96 / 3	0.92 / 3	$0.97 / 3$
GPC	$1.97 / 3$	$1.48 / 3$	$2.05 / 3$	$1.93 / 3$
G0	$5.15 / 6$	$2.75 / 3$	$6.44 / 6$	$5.24 / 6$
HAL	2.69 / 3	$2.68 / 3$	$2.72 / 3$	$2.84 / 3$
HIS	2.66 / 6	$2.05 / 6$	$2.74 / 6$	$2.66 / 6$
HZ	$1.80 / 6$	$0.79 / 3$	$3.01 / 6$	$1.67 / 6$
$\overline{\text { IBM }}$	$6.51 / 3$	$5.10 / 3$	6.69 / 6	$6.37 / 3$
IR	$4.50 / 6$	3.17 / 3	4.76 / 6	$4.54 / 6$
JNJ	$3.08 / 3$	$2.37 / 3$	$3.18 / 3$	$3.04 / 3$
KEL	$1.32 / 3$	$1.68 / 6$	$1.49 / 6$	1.63 / 6
KG	$2.09 / 3$	1.62 / 3	$2.16 / 3$	$2.06 / 3$
KMP	$1.83 / 3$	$2.37 / 6$	1.99 / 3	$2.16 / 6$
KRA	$2.73 / 6$	$2.61 / 3$	$2.73 / 6$	2.74 / 6
LDN	$1.30 / 3$	1.63 / 6	$1.33 / 3$	$1.30 / 3$
$\underline{L} 2$	$2.05 / 3$	$1.52 / 3$	$2.75 / 3$	$2.09 / 3$
MDC	$2.46 / 6$	$1.87 / 3$	$2.54 / 6$	2.46 / 6
MF	$4.32 / 6$	3.88 / 3	$4.34 / 6$	$4.32 / 6$
MFS	$1.88 / 3$	$2.28 / 6$	$1.91 / 3$	$1.92 / 3$
MMM	2.92 / 6	$2.25 / 3$	$3.61 / 6$	$2.89 / 6$
MRS	2.41 / 3	1.87 / 3	$2.48 / 3$	$2.43 / 3$
MRY	$3.91 / 6$	$3.90 / 6$	$3.93 / 6$	$4.00 / 6$
N	$3.23 / 6$	$2.36 / 6$	$3.64 / 6$	2.95 / 6
NS	4.12 / 3	$4.98 / 6$	4.20 / 3	$4.31 / 3$
NSC	$1.39 / 3$	$1.36 / 3$	$1.39 / 3$	$1.44 / 3$
NSD	$1.78 / 3$	$1.59 / 3$	$1.79 / 3$	1.78 / 3
NSW	$5.38 / 3$	3.09 / 3	6.62 / 6	$5.35 / 3$
NWA	$7.13 / 6$	$5.70 / 6$	$7.28 / 6$	$7.16 / 6$
OVT	2.96 /6	2.49 / 3	$3.05 / 6$	2.81/6
PAC	$1.26 / 9$	$1.34 / 6$	$1.26 / 6$	$1.24 / 3$
PH	$3.22 / 6$	$3.07 / 6$	$3.76 / 6$	$3.36 / 6$
PKN	$0.93 / 3$	$0.75 / 3$	$0.95 / 6$	$0.92 / 3$
PRN	$2.52 / 6$	$2.16 / 3$	$2.54 / 6$	$2.53 / 6$
PTC	$1.64 / 6$	$1.38 / 6$	$1.67 / 6$	$1.68 / 6$
RG	$1.28 / 3$	$1.55 / 3$	15.79 / 6	$0.75 / 3$
RHR	$2.52 / 6$	$1.42 / 6$	$3.03 / 6$	$2.58 / 6$
RTX	$1.19 / 6$	$2.35 / 6$	$1.43 / 6$	1.41/6
SBI	$0.90 / 6$	$0.92 / 6$	$0.90 / 6$	$0.91 / 6$
SCO	1.41 / 3	$1.65 / 3$	$1.45 / 3$	$1.52 / 3$
SCX	$1.76 / 3$	$1.95 / 6$	$1.78 / 3$	$1.82 / 3$
SFN	$0.97 / 3$	$1.22 / 6$	$1.02 / 3$	$1.09 / 3$
SIM	$3.15 / 3$	$2.88 / 3$	$3.20 / 3$	$3.01 / 3$
S.IM	$1.68 / 0$	$1.61 / 6$	1.69 / 6	$1.67 / 6$

APPENDIX K (continued)

Firm Ticker	Mode1			
	1	2	3	4
SKC	$2.41 / 6$	$1.82 / 6$	2,50 / 6	2.40 / 6
SKL	$3.05 / 3$	$2.96 / 3$	$3.06 / 3$	2.99 / 3
SNK	$1.17 / 3$	$1.67 / 6$	$1.22 / 3$	$1.17 / 3$
SRL	$2.15 / 3$	$2.00 / 3$	$2.16 / 3$	$2.13 / 3$
STO	0.48 / 6	0.96 / 6	$0.56 / 6$	$0.52 / 6$
SUO	$4.65 / 3$	$3.73 / 3$	$4.75 / 6$	$4.69 / 6$
SY	2.58 / 6	$2.15 / 6$	$2.62 / 6$	$2.61 / 6$
T	$3.91 / 6$	$3.46 / 3$	3.99 / 6	$3.88 / 6$
TRW	$2.53 / 6$	$2.26 / 6$	$2.55 / 6$	$2.55 / 6$
TXN	$3.53 / 6$	$2.58 / 3$	3.69/6	$3.46 / 6$
UCC	1.69 / 3	$1.83 / 3$	1.70 / 3	$1.62 / 3$
VFC	$2.34 / 3$	$2.09 / 3$	$2.36 / 3$	$2.33 / 3$
WIN	$2.29 / 3$	$2.06 / 3$	$2.31 / 3$	$2.30 / 3$
WJ	0.95 / 3	0.99 / 3	$1.03 / 3$	$0.84 / 3$
WPM	$2.38 / 3$	$3.84 / 6$	$2.58 / 6$	$2.48 / 3$
WSS	$1.31 / 3$	$1.55 / 3$	$1.32 / 3$	$1.29 / 3$
X	$4.42 / 6$	$3.60 / 6$	$4.66 / 6$	$4.78 / 6$

APPENDIX L

Firm Ticker	Alpha	Beta
$\triangle A$	－．00アarol	1．2113261）
ABT	－000）153	． 578372 \％
ACK	－0006346	1.1251030
$\triangle \mathrm{ACN}$	－．0021180	．183311？
$A C Y$	－．0010542	1.1185967
ALS	． 0011978	1.1739830
AME	－．Unこ0499	1．1044080
$A P X$	－．0023929	1．605niban
avt	－．0067440	？．2274ヶ3n
HA	\cdots	1．5596584
3 ${ }^{\text {I }}$	－．0023274	．9694041
HDK	． 0035.344	． 4859704
－3EC	－．0037451	1.4876740
HFC	－0000944	． 9767404
HIG	－007l5az	． 4374492
BY	． 0014706	1．280ヶ440
CAX	－．0035731	1.2949480
CNF	．Onlfils	
C．TS	－．0n015a7	1．406unso
CIJM	． 0001243	． 796174
CV	－．0014712	1.4254167
CWO	－．0011317	．11472007
OCS	． 0037415	－勺016780
015	－0073n76	1.43541617
Dr	－000， 140	－．331ヶ743
DSP	－00nasal	1.1013460
DSN	－．0016594	1.4763420
FNG	． 00013104	1．217anlo
FAM	－．00156R9	． 6590509
	．0041579	1.4940470
FLD	． 00004147	－577740？
FMO	－．00134 77	． $54-3085$
GIV	－．0064117	$1.4 C 31470$
GLR	－ 01112427	1.1374540
GNN	－00115， 271	． 9474167
GO	－．00045a5	． 2500314
GPO	－003rin3	－1575301
GSX	－0nnfir43	－9047017
GVL	－．0002－441	． 2967117
HAY	－．001afino	－+414.763
HGH	－．003ヲ190	－H1anoll
HLR	． 00376340	1.3104110
HMD	－．0n015ag	1．136ARGO

APPENDIX L (continued)

APPENDIX L (continued)

Firm
Ticker
Alpha
-.0038605
$=.0079770$
-.0014578
.0020774
.0012072
.0000787
.0013471
.0011026
-.0014348

Beta
1.5427100 .2270986 .6464223
$1.015436 n$
. 491 1.13?
. 8417545
1.27.31550
1.0Y\&8070
1.3220120

MFAN
..0003991
$1.0459142 ?$

APPENDIX M

REGRESSION COEFFICIENTS FOR FIRMS NOT REPORTING EXTRAORDINARY ITEMS

Firm Ticker	Alpha	Beta
		-
APD	-.0000739	. 49002345
APO	-.007095s	1.13×10 2n
ARV	-.0000104	- 9 ¢77284
AVP	. 0013634	1.122617n
AXO	. 0005638	-9220132;
3BL	.0025475	1.1025910
HCR	.0n00143	. 4897720
H0) X	-0003243	1.7547070
HER	-0044001	- $\times 784733$
gou	-.0047501	1.504490 \#
RQF	-.0028312	. 947962 ?
Hup	.0005732	. 4463475
CAT	. 0004842	1.1647420
CCF	-.0022134	- +7244.33
CCK	. 0004348	. 6454950
CDO	-0017102	1.2514140
CLU	-.0nzafyz	1.0021737
CNK	-.0n01+31	. 4346411
CPS	-0024054	1.31913400
CPF	-0009ロ27	1.364473n
CRI	-.0004195	1.92377カn
CRS	-.0001106	. 1178446
CSK	-0017470	- 3 353662
DFC	-.0014746	1.0770000
OML	- 000630773	1.1805380
DNY	-.0077043	. 7514×10
eaf	-.0001743	1.1443210
EK	.0031179	1.0187370
EOS	-.0001371	. 41919174
FBG	-.0028439	1.4413320
FHO	-.0011330	. 4387565
FCF	-002kl4it	1.6547480
FLT	-.000ncon7	. 7 7? 3344
FOX	-0,063/41	1.2687?9n
FT	-.015 27443	$1.13010 ¢ 0$
GAT	-.0114476	1.770n180
GDC	-0173.2055	. 94884991
GF.	-.0007310	1.0539410
GLW	-. 0027241	1. 2084590
GOR	-.0071473	1. $26 y 4947$
CPC	.0030528	- $54344^{\prime \prime}$
G0	-.0005045	1.1804.950
HAL	-004m>50	1.302H150

APPENDIX M（continued）

Firm			
Ticker	Alphe		Beta
HIS	－． 0055171		1.2543690
HZ	－． 00004754	a	1．7620．30
IRM	． 0018002		1．2141900
IR	－．0009705		． 2434013
JNJ	.0041115		－R87 1949
KEL．	－． 0005476		1．437\％190
Kr，	． 00443592		1．3571910
KMT	－．00？ 05014		． 4646030
KRA	． 0002295		． 5294257
LON	－．0031542		1．入こ3353n
L． 7	．0025976		．700ヶ910
YDC			－nでdz42a
MF	．0020つ54		－ 8 C94701
PAFS	－．0002710		．4783741
MMM	－0ワつ3744		1.0697350
MRS	． 0005784		． 1471614
NDY	－． 0005378		1．1）564．47n
N	－．0nnaialb		． 309370 ？
NS	－．00．11377		． 4971716
NSC	． 00255579		． 4510910
NSD	． 0039078		． 5473780
VSW	． 003 \％nカs		． 1797437
NWA	－．003h450		1.4103280
OVT	．007ヶア13		1.404×2320
DAC	－．000k79a		－勺く3つけ70
PH	－．0017604		．4425816
PKN	． 00000 rat		1．6444017
PRN	－． 0011906		．4447154
OTC	－．000n913		．4471717
RS	－．00477P7		1.0344700
RHit	－．0000261		1．1297＇90
RTX	．0023732		． 79 で告ち97
5 F3 I	． 0013684		． 4091255
SCO	－．000136？		1．06tal3n
SCX	－．0001 O ＋ 0		－¢ 84「519
SFN	－．0020111		1．0940950
SIM	．0004452		．752983
SJM	－0112855		． 18487.35
SKC	－．0099114		． 4434320
SKL	－．0000115		1．0131980
SNK	－．U064210		． 7234564
SHL	． 00000025		－ 3 crisha
STO	－．001402？		.9470497
5110	－． 0013744		．181339K
SY	－．0027430		1．405，410
T	－．0006103		．6531417

APPENDIX M (continued)

Firm		
Tıcker	Alpha	Beta
TRW	-.0020200	. 4110317
TXN	.0030576	1.3480030
UCC	.0014ヶ70	.952>365
VFC	.000ヶ803	.92)7374
WIN	.002anay	. 5454317
WJ	-.0068350	1.6586,45n
WP:1	-.0n06140	. 41401566
WSS	-.0004712	. 4500578
\times	-.0013145	. 930455 ?
MEAN	-.0002990	. 9998591

APPENDIX N

REGRESSION BETAS BEFORE ANI AFTER EARNINGS ANNOUNCEMENT

The purpose of this appendix was to investigate changes in risk (as measured by the securities' Betas).

Firms Reporting	Beta Before Earnings Annouricement	Beta After Earnings Announcement	Z	Probabilıty
Posituve Extraordinary Items:				
Mean	1.0521	1.0328	-. 7047	. 241
Standard Devıation	0.4001	0.3191		. 241
Negatuve Extraordinary				
Items:				
Mean	1.0790	1.0969	-. 5555	. 289
Standard Deviation	0.3719	0.3496	-. 555	. 289
No Extraordinary				
Items:				
Mean	0.9902	1.0011	- 2569	
Standard Deviation	0.3568	0.3439	-. 2569	. 397

From the probability column it appears that none of the changes in betas are significant using the Wilcoxon matched-pairs signed-rank test (Weiner, p. 75-83).

APPENDIX 0
 NUMBER OF FIRMS IN EACH TWO-DIGIT SIC CODE

SIC Code	EI Firms	Control Firms
10	2	
14	1	2
20	4	1
22	2	4
23	3	4
25	1	4
26	5	1
27	4	5
28	11	2
29	1	11
32	6	1
33	4	3
34	2	7
35	9	2
36	10	9
37	6	10
38	6	6
39	2	4
42	1	2
45	0	1
47	1	1
48	1	1
49	1	2
50	1	1
53	2	1
54	3	2
56	2	3
57	1	2
59	2	1
61	2	2
78	1	2
99	1	1
Total	98	0

APPENDIX P
 DAY OF THE WEEK EARNINGS WERE ANNOUNCED

	Number of Firms Reporting Extraordinary Item	Number of Control Fırms
Day	11	16
Monday	20	17
Tuesday	27	19
Wednesday	14	22
Thursday	26	24
Friday	98	98
Total		

APPFNDIX Q
 WEEKLY APT BY PORTFOLIO

PANEL A

WEEKI．Y API FOR MODEL 1

Week	1	2	3	4	5	6
－52	．006331	．00702\％	．01105	－．01482ら	－．012166	－005413
－¢1	． $000155{ }^{\text {c }}$	－． 017546	． 014229	－．014 027	－． 0004500	－017914
－50	．0nf27a	－．031634	．1）14884	－．0102ys	－． 0727524	－ 016219
－49	． 013107	－． 04041616	．01496n	－．014417	－． 004451	－U14231
－48	.012950	－．044041	．023234	－．1113547	－．10n8083	－ 11136065
－4 7	． 007543	－． 05100.	－ 0 ？ 21482	－．014817	－．002604	－011560
6	． 011447	－．．034440	． 023370	－．022753	－．00335	0
b	． 0233945	．030131	．030223	－．0．21041	－．0．344\％	－：000117
4	． 037733	－．029443	．1033315	－．．071724	－． 031484	－012048
－43	．05502s	－．014927	． 0747843	－．0）31545	－．0．07724	－002136
－42	． 05301 H	．0n2933	．051875	． 037678	－．0ヶ000n9	
－41	． 054122	－． 017789	． 053409	－．04060 7	－．073014	－011140
－40	．064704	－．027934	． 047563	－． 0.043667	－． 10 F 777 m	6
－39	．069744	－．034132	．047707	－．04 0167	－． 085834	－003683
－38	． 0715907	－． 047042	.043435	－．．035930	－．0535 35	．001295
－ 27	．060423	－．021719	． 045427	－．0＞5230	－．0553475	－012576
－36	．07550？	－．0n1733	． 053124	－．032．291	－．071491	－． 117380
－35	． 072413	－． $10 n 6177$	－05375	－． 032077	－．070711	－ 024114
－34	．0ヶ3142	－．004551	．05323	－．03＞425	－．071221	－ 026380
3	$0.0 .3781 \sim$	－．016．454	． 047175	－． 036056	－．0n142．	－－15cind9
－32	． 034944	． 014541	． 045144	．．．037881	．060453	＊－ 02.1000
－31	． 01568 ？	－．0nn3as	．04568）	－．043989	－．0＇54826	－ 1131859
－30	． 03860 n	－．001744	．0ヶ4556	－．055970	－．053433	－－1288021
－29	． 0.33346	．007724	－ 0 f， $23 \mathrm{Cl} /$	－．0ヶ060	－．053384	－．1141362
－78	． 037843	．070995	． 0 ¢fi04K	－．05787	－． 039117	－． 045476
－27	.050037	．0アn011	． 115 ¢5417	－． 073703	－． 0411634	－010312243
－26	． 048370	．0n9484	． 1973097	－．067545	－．0．55025	－－1193164
－25	．057137	－0） 7133	． 07366 m	－．0605u？	－．004170	－．049334
－24	.044613	． 0444878	．079838	－．057877	．016283	－：034341
－23	． 037074	．03257？	． 041487	－．051874	－ 0043 LH	－．1）37826
－2¢	． 037801	.051271	－00，2b8k	－．055791	－002201	－0．144417
－21	．04ヶ74	.057189	．10377）	－． 066569	－0n282t	－－053009
－20	．061231	．05441？	．122380	－． 07057	－10nc5bl	－015l5nl
－19	．04～bes）	－Onasun	．11－602	－．079183	－． 01078 ¢	－－Ub9003
－18	．041764	． 040544	－11＋493	－．047553	－1）07498	－． 0595988
－17	． 056553	.054927	－1ヶン70	－． 184943	－． 01×544	－． 1156300
－16	． 072543	．08762＋	． 134324	－．087050	－．020）454	－． 11433.33
－15	．07675H	． 073981	． 110670	． 0 Hh34	－．0563大A	－．060262
－14	． 0 R9883	． 059703	． 100313	－ 10 ¢207	－．039727	－．1165241
－13	． 104085	．064260	． 1015644	－．034324	－．04＞784	－．069407
-12	． 098940	．082097	． 115342	－．09731＇	．． 036347	－．074663
－11	．11910，	．062400	． 115010	－．047033	－．056047	－．011493
－10	．151790	．0401619	． 113838	－．096713	－．0ち3270	－－USil07
－9	． 107159	．0577b3	． 111794	－．0440R7	－．07772	－－vectos
－8	．168638	． 048434	.171090	－．093294	． 13155 ？	－0112548

APPENDIX Q（continued）

Week	1	2	3	4	5	6
－7	．176600	． 038593	． 142593	－． 096539	－．057301	－． 0104628
－6	． 198400	．071986	． 151263	－．049327	．05176？	－．064525
－5	． 19.9344	．051820	． 158461	－．00471？	－．073034	$\cdots .162446$
－4	$.1773{ }^{\text {a }}$	．057397	． 161125	－．09870m	－．06725	－．1181908
－3	.143163	.044400	． 11419 H	－．04ヵ605	－．073383	－． 0179167
－2	.199530	． 044006	． 186165	－．0か436？	－．0457b？	－－ 0811650
－1	． 214082	.035042	－165773	－．．04357？	－． 074334	－．1）81362
0	－ 22950 n	． 035344	．187077	－．094185	－．06？879	
1	． 243509	． 032865	．1950くn	－．046275	－．0567111	－－ 082289
2	． 246323	． 03774π	．17913？	－．017083	－．055268	－．116902
3	． 242692	．04022－1	． 131164	－．012492h	－．058030	－．1173471
4	． 25413 h	．1）33000	．141225	－． 198×759	－．0ヶヶア4ら1	－．1）79365
5	． 251387	．0．01く54	． 144154	－．091549\％	－．077514	－．1083313
5	．25552＞	．）01375	．1habon	－．079313	－．04625s	－1199101
1	． 254043	－．02ヶ8か）	． 178596	－． 105037	－．0．3763	$\cdots \cdot 1904791$
8	． 257820	－．017007	．19243m	－． 1114195	－．02574．	$\cdots(181) 174$
9	． 250297	－．027470	． 196214	－． 101477	－．1134948	－－08ア671
10	． 2517435	－． 037309	．1－736？	－． 105917	－． 1148697	－081399
11	． $25834{ }^{\text {a }}$	－．047831	． 275405	－．116．333	－．047811	－．1184ら51
12	． 2401021	－． 049773	． 209077	－． 110545	－．045903	－． 079830
13	． 254459	－．052970	． 20146 ？	－． 0.095971	－．047703	－040304
14	． 25465	－．05428 7	． 205425	－．086606	－．093610	－．011448
15	－26305	－．040101	． 204665	－．091517	－．080525	－．01？738
16	－こちの373	－．0142055	－ 205644	－．024710	－．05454，	＝－0844364
17	． 257474	－．031767	． 202814	－．047055	－．047761	－ 0084619
18	． 272251	－．0543bl	． 202843	－．091137	－．056543	－0092497
19	． 2 M0614	－． 01055807	． 2111911	－．04ciok3	－．0n＞414	－．041709
20	． 234364	－．．040745	． 21 1785	－．093260	－．019133	－0．08ア1n8
21	． 31781 N	－．04384 $\%$	． 211238	－． 104471	－．093141	－．075¢05
22	． 3104174	－．034481	． 194240	－．0．9565	－． 10370 H	－．01507
23	． 291971	－．004327	．194791	－．090364	－．0．74204	－0．084209
24	． 310295	－． 017574	． 104467	－．094194	－．07702？	－． 069509
75	.342993	－．005664	． 200054	－．044964	－．1115627	－．1064H35
26	.378701	－．009513	． 216153	－．095583	－．09331 7	－． 064134

APPENDIX Q（continued）

WEEKLY API FOR MODEL 2
Panel B

Week	1	2	3	4	5	6
－57	－001274	78945	．011719	－．07145n	－01？94．7	－004510
－51	－ 092517	1	－ 019479	－0077450	－013316	－016733
－5n	－0n7505	－007203	－ 124400	－－0ワ45，59	－－п ¢ ¢ \％iz	－000931
－49	－． 017308	$\cdots \times 11153$	．${ }^{\text {P37 }} 17$	－．0118ラ97	－．0nつアs＊	－ 0193754
－48	－．015604	－0101914	－1）1925A	－．071413	－011442	． 023697
－47	－． 013473	－．05455？	． 015154	－．000570	－0117724	－ 19 こ74？
－46	－．015544	\cdots－n34711	． 017745	－－0109514	－00234．	－ 019767
－45	－．01）${ }^{\text {－}}$	－ 016078	－014985	－．0117157	－．017213	－nclnal
－44	． 703514	－ 0 1anci	－ 024938	－．016imA	－ 017848	－022992
－43	－ 115175	$\cdots \mathrm{O}-13543$	－ 033934	－． 224348	－ 015883	－017419
－4？	－ 007245	－－044173	－113917？	－＊ロこ？${ }^{\text {－}}$		．023331
－41	－0n5372	－．03615	－ 135071	－0．02nn7A	－．009394	－ 01 nil4
－40	－ 017535	－047nず	－1）3フフ37	－． 731770	－ 011 173	． 111 ¢35
－39	．014175		－0416n？	－．113253）	－012713	－0クロリアコ
－39	－na 143\％	$\cdots 747011$	－ 042192	－． 137721	．040959	.001719
－27	－กフマラフ3	－041841	－036，148	－－10ヶの7，	．0510n．3	－．0リプ！ 7
－36	－ 041199	303	－ $04 n 7>0$	－．114973．3	－1）32745	－ 0104453
－35	． 037434	－0．030928	－1142324	－．11713．27	－ 041597	－． 013091
－34	－0．9905	－0．14474）	． 1147195	－－11472059	－ 754514	－．nて3べ号
－33	－ 023 no3	072701	－1）511349		－ $05851 ?$	$\cdots .029781$
－72	－ 123743	－0．jfu3na	－ 147918	1949989	－0ヶヶ¢53l	．032236
－71	．014150	$-0.1432+1$	．1744127	－．05ヶ719	－042nl2	－．035791
－ 70		－．074444	－1194390	－065937	－031143	－．034112
-39	－ 030035	－ 0 － 17003	－1153944	n6apar	－026apl	036114
－ 291	－11－7476	． 017401	－ 0555734	－．1）79857	－01ワヶフッ	－．0309．7 7
－ア7	－024976	－－ก2ワ1つ3	． 058262	－． 1136477	－0190n3	－． 047574
－75	－ 02574 ？	－．1911637	－0t1191	－．032754	－039173	－044427
－ 25	－ 03 ？クロ2	－－刀nnna	．0ngoss	－．0790．0	－ 149485	－．104anis
－74	－03172？	－072311	－07＞1n0	－．060807	－ก¢7331	－． 130773
－23	－ก201940	－п12nH0	－ 712082	－006atars	－ 05 ว「16	－0．3フEn3
－ 2 ？	－ 0211104	－024n7\％	－013375	－．0674591	－ 042174	－．n3nfit
－21	－n21034	－．0nfills	－076147	－． 051324	－ก2入919	
-20	－nzatina	－1）04235	－193951	－ 0 ， 57916	－ $1143 n 4$	$\cdots-72507$ ？
-19	－ก2， 50 ar		－ 749848	－．078293	－ 0 ？ 5479	－．03n191
－19	－ 017168	－017ヶ77）	－n以ata	－09n5．as	－ 0355711	
-17	．017323	－0．040474	－137124	－．0314n3	－nこ377n	－． 111954
－15	． 0175007	－00is9．7． l^{1}	－リAn9R8	－．074271	－ 019073	$\cdots .1002044$
－15	－03F394	－－1ts3049	－ 114393	－．114247	．021523	－． －$^{\text {2 }} 1675$
－14	－ $0+36.55$	－00756al	－ $17=975$	－n¢fl919	－013724	－．031344
－13	－ 040776	－0＇dac5il	－ 117894	－．08のn¢3	－013ajn	－．047001
－1？	－1）43459	－ 0175906	－174972	－．077n¢	－．0n4？13	－．033214
－11	－ 0 ¢13347	－-139351	－ 176870	－difilas	－0021479	－．732053
－10	－07クワワ7	－ 0 － 4 ¢593	－1355747	－0n7ヶ2al		－．031233
－0	－orarata	－0055779	－17）${ }^{1774}$	－0111：147	－ 0 － 5555°	－．037123
－8	－ 08130146	$\cdots 111>0 ?$	－1191794	－011354	065830	－．0333n4

APPENDIX Q（continued）

Week	1	2	3	4	5	6
－7	．079747	－．013．5？	－ 075564	－．011637	－ 061584	－．014371
－6	－クロコ5フ7	－017414	－10niga	－． 055575	． 080175	－．008．914
－5	－ 0.360911	－001675	－10n757	－．05438＇，	－．n70129	－0006130
－4	－NR3M7	－．0177a7	． 097513	－005634il	－．09つ729	－00007ア1
－7	－036715	－．ก29， －$^{\text {J }}$	．197932	－－05nの7t	－11441ヶう	－．00535
－？	－ $135 \% 30$	－．00979？	－10703．3	－． 747954	－ 775178	－．014333
－1	－ 034733	－000890	． 170190	－－01ヶn338		－．nリィフ1．；
n	－n89ras	－137244	．12534n	－．11544n7	－ 1 「504 0 51	． 01437 \％
1	－095331	－0．35453	－100？${ }^{\text {an }}$	－．04709\％	－ 04 Rアララ	－ 017401
$?$	－ 1957887	－ 0.1985	．119970n	－． 133707	－ 144503	－ 017984
7	－0935ア1	－ 0 ？ 2634	．044293	－－13ッフワ？	－ 044 43\％	－ 024243 ？
4	－ $0 \rightarrow 3947$	－ 016 lic		－ 013 ¢ 312	－．051113	－ 012859
5	－085424	－01195́	.190939	－．040145	－．054271	－ 114757
6	－ 18785	－．711642	－ 0 9955	－．03837．	－070riza	－173927
7	－ 079314	－n047793	－ $196 \mathrm{na4}$	－． 0141331	－07175？	－ก2 2 （1）
A	． 789471	－．054534	．095154	－．0404475	． 077115	－02ヶスが
\bigcirc	－ 0 价39ヵ3		．101673	－．0．371	． 0715%－	－ 015972
10	－08の197	－．033404	－117737	－00435n1	－0กイก775	．023417
11	－ 0137045		－176884	－．1145123	－0¢5こコロ4	－024733
12	－กフコログ	－．053289	． 115873	－． 0194474	－กイ43ッ1	－ 037 ¢74
13	－198489	－． 0 － 5 ¢578	． 175716	－．0．311n9	－加マワタ1）	－032579
14	－0137419	－0．n47005	－111301	－．0334．アウ	－．056290	－ 73 2331
15	－11423933	－． 1448937	．116497	－．010777	－ 0811743	－ 03469%
16	－01344n	－，กG7aに？	．118177	－．004341		－117953
17	－781465	－． 097410	．174117	－．000364	－ 0305922	－ 027185
18	－0タ1コ73	－－10， $2+5$	．1073n1	.0174510	－．05712＇；	－ 035501
19	－ 07 18555	－． 177391	． 1134410	． 0103975	－ 098974	－1）3477\％
20	．083817	－．055904	－116793	－0， 07544	－ 0712275	－ 031515
21	． 095571	－．058150	．117298	－．007733	－ 0575335	－ 135374
$3 ?$	－119333	－．073346	－117914	－． $0149 \mathrm{~A}+$	－ 0 － 6 ¢138	－010ヶロコ
33	－117777	－． 104075	． 179574	－．0n4077	－－пn7967	－0183ヵ1
24	－112760	－． $1358=5$.107093	－．0n5197	－．05はアフ1	－ 034 ¢13
25	－141773	－．140323	－177988	－0015334		－1）41974
76	－1．3234	－．132341	－127nカ3	． 00535	－． 1757284	－045703

APPENDIX Q（continued）

WEEKLY API FOR MODEL 3

Week	Pancl C					
	1	2	3	4	5	6
－5？	－0n4124	－00ハワ79	－014533	－．0n4835	－002350	－0n3831
－5］	－．0n1年37	－0nイッフa7	－リla	－001453	－．0n0）	－nर1899
－5n	． 011194	－i） 15449	－014896	－． 1110297	－．003．${ }_{\text {－}}$	－ 221777
－49	． 017908	－．n757？5	．011343	－0．014417	－09prat	
－48	－ 015043	－．033517	． 215.353	－． $0135+7$	－1174．335	．021917
4 7	．011517	－0．0．349，77	－ 117354	－018417	．00157\％	－ 011477 ？
－45	－015157	－．ñaarz	－กアフラフカ	－．0こつ753	－．016ワクH	－0n7343
－45	－02コア3n	－．017453	－ 0 292351	－．021042	－0156ヶ53	－0nparis
－44	－ 3 35490	－0） 3436	－0．33698	－－อ1774	－－n20146，	
－43	．053n日8	－ 91377 ？	－0444R2	－．03154	－．013060	－0］3631
－42	．047117	－ 036590	－174．924	－037580	－．02nの71	． 117×730
－41	．047415	－1）275nl	－045ア84	－0ヶ゚のちワ7	－．031071	
40	－ロ「スの30	－015，90		－．n43567	－0004067	－0054．5
－29	－06フ174	－ 0179810	－0475゙15	－0442729	－．919314	－11213n
－79	－ 0 K7a4\％	－ワ1）121	－0472ach	－ 033090	－．007017	－ 008045
－37	－052471	－110953	． 14450070	－．กアか， 37	－0113445	－．0n1k35
－75	－1）55\％ 3		－0553n4	－．039371	． 131447	กn7n6．3
－35	－ก5マニシ3	－ 026503	．0511．3	－．03217\％	－0327494	－．008070
－34	．05337）	－ 01114%	．051375	－．10321525	－oncang	－． 011479
－33	－ 03 n293	－03issns	－0405611	－． 0361150 ，	－ 014641	
－32	－ 130507	－กวラッ84	－04，351	－． 11379297	－ 013040	－． 01189^{\prime}
－31	－011521	－007ti40	－039441	－．143489	－ 1015436	－． $11>55,7$
－30	－ 13 ¢5¢\％	－ 0151570	－05n33．1	－ 0155771	－1）1501？	0015104
－29	－1125514	． 134555	－05473	－－15505n2	－019172	－011ヶ114
－2M	－ก3＇コロ号	－ 13 2Rの号	－055935	－－05，787＇	－ 123797	－．0173944
－27	－ 15 ？ 173	－ 0335 nc	－046903	－．0177．3	－111031	－．02．）23
－75	．045611	－0．33373	－nfontain	－ 067564 h	－02710？	－－ $125_{1} 143$
－． 35		－050h6t	－067fol	－－nenn5n，	． 137650	－． 221961
－ 24	－03017	－ 065573	－ 074013	－．052977	－ 054785	－0119113
－．33	－131921	－ 05 2529	－ 074284	－． 551874	－ 0 ＇in 375	－－nloral
－7？	． 135354	－06．3？ 0 －	－ 08775	－055，791	－114ヶ3n6	－ 019201
－21	0037447	－ 0.3233 d	－114237	－－ 0654569	－ 070449	－0ctarar
－3n	－044，4？ 2	－กจアコワ？	－125ing ${ }^{\text {－}}$	－ 070596	－077156	
－19	－0ヶnn？ 1	－097071	－121．64	－．079183	－040403	－． 131134
－18	－ 024527	－177511	－129374	－．03755	－пnゴヶn？	－ $11353 \% 1$
-17	－ก3ه4アコ	－ 095536	－136474	－． 089093	－ 051130	－．03070n
－16	－ 0 のn4ワ1	－1146ア4	－12arin	－ 00870851	－ 030783	－0．019190
－15	－0から7ヶ4	.109313	－116741	－088年343	－ $01118{ }^{\text {a }}$	－0035449
－14	－09n191	－102179	－115763	－．1023n7	－ 115798	－014979
－13	－no：741	－115n24	－112890	－ 00098324	－ 310978	－． 0488471
－12	－1183439	－132725	－129n5́a	－．047319	－ 015 Liou	－01）93793
－11	－114951	－116034	－1701154	－ 047113	－0n87？3	－0ncill1
-10	－155985	－117abat	－12454		－0n373R	－．034230
－9	－17へ17ヶ	－135391	－17nloi	－．091027	－10431？	－0041470
-2	－143321	．14464n	－14つタの7	－093294	－1901471	04972？

APPENDIX Q（continued）

Week	1	2	3	4	5	6
－7	－1ヶ0421	－156173	－156254	－．096537		－0040901
－6	－130915	－132984	－164533	－． 099321	－－023行3	1）38030
－5	－1．＊オアッ3	－144 Atal	－157787	－0．04712	－0．034323	－ $0346 \% 1$
－4	－154？75	－1717日3	－175737		－ 027094	－
－3	． 179234	－1503n？	－13492n	－0xG6ats	－． 240511	－ 0.75048 r
－？	－185531	－179374	－17973）	－． $23935 \therefore$	－－リ17ハ17	－ 1144.972
－1	． 270391	．191124	－1724ヶ゙大	－0．033572	－ロアロアア4	－$\cdot 7494116$
n	－229241	－160363	－19aty ${ }^{\text {cha }}$	－094182		－． 174.3443
1	－ 242119	．157473	－196ifor	－0）以大ぎ刀5	－0024 0 ¢	－－ 0442642
2	－2513～サ	－159147	－19ア大のロ	－ 1777183	－－п345ッJ	－－ 0435312
3	－247171	． 157247	－196519	－ 079 ayp5	mn 0 ，157？	－ 0 － 04611
4	－24957？	－19250．3	－1471075	－．n29757	－ 04 のпバ	－－ 047590
5	． 243537	－173744	－ 2177513	－． 095491$)$	－1）7ノ日小4	
6	－ 254744	－173474	－215894	－．n99313	－ 05 （1） 16	－． 749479
7	－247111	－1ヶフ72．3	． 194775	－－196へマ	－ 155×7－	－ $11<30^{2} 1$
8	－25822	． 159198	－ 216074	－ 101414	ก！7］n，	－0－73R1， 3
9	－247975	－155432	－209？37	－－111477	19	－0ncinonf
10	－3 30967	－129653	－2アッうの号	－． 175017		
11	－247172	－195155	－23フnal	－－17633	6	－ 0 aton 3 2
12	－ 23 仿 55	.137105	－ 232454	－$=110545$	＇	－－ 11518 ¢ 7
13	－2＇71．22＂	－140915	－23ハアつ，	－0093＇71	－ 144943	
14	－242797	．144352	－ここのに3＊	－0以ム大の日	14140，	－＊ 11420194
15	－25547n	－161046	－ 2 205324	－0000517	hり17	－．1142759
16	－25941	－13498年	－ 234114	－ 0084710	124740	－065n79\％
17	－ 2449024	．147779	－222078	－0．0．9705j	¢96？	－－051855
18	－ 2670%	－148459	－ 2 20ヶ71	－ก9117\％	24476	－．040817
19		－1449n）	－ 224415	－ 0195983	ก27ムア碞	－0043533
20	－ 292351	－15つつ13	－226677	－093751	－ 0.3 Luratz	－060337
$\bigcirc 1$	－313730	－1747ing	－ 231504	－0．114471	04345年	
22	－ 290901	－1954，	－214ว？）	－ 0 － 95656	－0．059307	－04002：
23	－271715	－21？938	－211127		－ 04 ¢9ヶ5	
24	－277977	－227449	－ 277844	－－009194	－ 03717 ¢	－034ち3．
35	－323971	－ 261 P5？	． 215914	－0－Matat	－15n64？	－0．354ヶ4
26	． 314367	－25，285？	－235706	－0勺勺にヵ3	－－112アaから	－－n3？${ }^{\text {－}}$

APPENDIX Q（continued）

WEEKLY API FOR MODEL 4
Panel D

Week	1	2	3	4	5	6
－57	－003571	014737	－ 171110	0nn893	17	00121
－51	－00nnfs	013374	－ワつつ¢づ3	－．001710	－．016544	－ 01212
－50	． 001100	－ 015979	－10243n3	－006430	． 027844	－Orá
49	－00321a	04n471	－n2？${ }^{\text {ara }}$	－ 0 － 1188751	－．00185？	－ 01097
49	－．001619	112.2037		－－пn7ta゙	－．00567	． 0160
47	－．00445？	029504	－n？nnla	－015173	－ 0 － 0 プic	－00121
46	－00n3＇）	013173	－nて174？	－00アアフロ	－．015936	0035
－45	－n n6487	－ 015198	－n17ヶヶ¢		－01017708	01
－44	－nlanra	－078408	－пアR431）		－003329	－ 015
－43	013 CO 2 S	－0！2ajag	－1）1975i	－－040500	－011729	． $01 n 7 \mathrm{~F}$
42	－03014．7	－0．20453	－1145794	－0443an	－0028，841	． 012
－41	－03nつ34	－046！18	． 17440109	－．0397ai＇	－0144ア49	－0
1	－ 1340.75	－093947	－ 3 3475l	－－0ヶr374．3	－－7el503	－． 010
－39	－ 0368840	－กリ3）	－041773	－刀¢apan 4	－0．03637c8	4
－38	－ 1414017	－ 012461	．040736	－0043129	－ 0151443	－ 00
7	－ 034 のア3		－036381	－0．3ncor	． 023777	－0nci
－36	． 047597	－ 137235	－0155．206	－01372：3	－ormeoo	－－ 0
5	－1）43544	－ 035433	－1741783	－．1）334010	－－0ก3038	－ 0
－34	－）Paín	－ 020135	－ 14 43， 010.	．．034511	－．0n7659	ก21？
－73	－ 119307	－1）36，${ }^{\text {a }}$（4	－ 0×3717	－0042689	－010） 010	－．023601
22	－ 015034	－ 055 ARO ？	－ 047 n 2n	－．047262	． 01471	－． 1033
－31	－010450	－041491	－ 039410	－．0うこ！n4	－．000374	－． 03
－3n	－11？1843	－ 047591	－ 05 ¢93 34	－－пnatraa	－．01749\％	－ 0 －988
－ 29	－017844	－ $10884{ }^{\text {a }}$	－ 051304		－．0161011	077
－29	$.0200 n 6$	－ก97arl	－ 055666	－．n6743r	－－04nont	
－27	．041919	－¢9ア7ロハ	－ 058 n －	－ － 0 an394	－．03n741	－050ヶ
－36	－041191	－103507	－ 067175	－．nBR710	－012758	－． 0 F
－ 25	－045237	．1104719	－07n981	－ 075304	．001440	－．${ }^{-15}$
－74	－ 0 －${ }^{\text {Prata }}$	－13806t	－ 074371	－．077204	－017973	－．045ci58
－ 23	－ 035820	－1？ －$^{\text {a }} 17$	－ก（1）29	－0¢906？	－．011961）	－－0
－2？	－1741293	＊13206，	－035478	－－ 076196		－．
－ 21	． 047097	－175734	－ 0 96， 117	－－0728の7	－－0114143	－0norer
-20	－ 056530	－п96147	－11037：	－07965 ${ }^{\text {－}}$	－0．3n5inc	\cdots－ 0
－19	－040115	－09ワ2ロ5	－19ヶブロ	－0901a4	－．029241	－． 174
－18	－0419ヶ7	－087155	－114＜＜1	－ก－7afip	－．012561	－ 0 07557
－17	－ 047491	－กッ3724	－1204＋0）	－．09795	－．041113	－ 0 －
－16	－ 067503	－п勺小117	－120n41	－008RAT	－－n42アフ5	－． 0577115
－15	－070384	－ก87ワ78	－112＞9	－．095790	－－तrangan	－． 0
－1／4	－n79534	－n¢367\％	－107374	－． 113774	－．nflofy	－
－13	－ 09 9\％95	－ 079910	－104131	－．111848	－0．074137	－ 1
－12	－09163n	－nB7ary	－1129nt	－－113771	－． 0589744	－orinnte
-11	－10477？	－ 047397	－115174	－． 1118114	－．ngフnal	．0954885
-10	－］2795n	－0917nf	－！］a 3 8	－－11066／5	－．n87アar	－0
－9	－137681）	－101731	－115ヶア1	－－10F98？		，
－ 8	－141793	－0899R3	－1才176？	－－lnaten	－Mepan？	-10076%

APPENDIX Q（continued）

Week	1	2	3	4	5	6
－7	－144106	－104？94	－141141	－． 111319	－．071838	9ア6
－6	－1，58484	－13036\％	．145637	－－¢ ¢ ¢ ¢	－． 0785 fin	－0083145
－5	． 154781	－107914	－146647	－． 109510		－．078349
－4	－150304	－110063	． 14 ¢faga	－－10ヶ3nこ	－－C065a3	－0．080636
－3	－ 149483	－136791	－15n800	－． 104647	－．0781？n	－ 076028
－ 2	－1F，n4fa	． 143458	－1490na	－．108744		－ 0.083459
－1	－15月31A	－14ヶロ15	． 14545%	－． 102454	－．05R10］	－－npolat
0	－14アワワ4	－1．324ヶl	． 150008	－． .113049	－-0 ORa，	－．017389
1	－19815\％	－135012	－155550	－－1nวan？	－05？${ }^{\text {－}}$	－．07notz
？	－191575	－13A7po	－150740）	－．norg18	－ 0.0544 Ban	ก6asama
3	－19n79．3	－1アヶロ5＊	． 1518870	－．10n83＊	－ 0691443	－ 0 － 0 ¢506\％
4	－198364	－17302l	－1「77al	－1019611	－n063，	－nopronc
5	－149777	．086552	－1年1257	－． 103614	－．075436	－．0507114
6	－197nフ？	－ 188384	． 151723	－．108915	－．083007	－．074350
7	－188729	－ 077321	－159523	－． 114534	－．0904c； 7	－． 070974
R	－1ワワワア4	．061983	． 1596.7	－．114394	－．049435	O7c，98i
9	－1937ヶ9	－061751）	．1428al	－．111946	－000307	－081108
10	－191233	－15794？	．17758）	－．lifinal	－ 1 1005ma	－．080のロッ
11	－190954	－ 034000	－177984	－．114116	－－1n54？	－－09pa73
12	1977954 .190430	－n4504？	－185293	－－116124	－11：1\％］	－-175661
13	－190430	－068068	－17アコが	－．107067	－nimal3	－0．073356
14	－190427	－ 069643	． 178904	－． 09956 ars	－．n03n05	－0h6498
15	－1923n7	－079ヶ3）	－179063	－．094115	－．091774	－．nfitha
16	－197171	－ 1758194	．1702a	－oncmiar	－．08315	－．07965．
17	－173581	．077278	．170ア43	－．0978113	－Dinpraz	－．0853a7
18	－198534	－ 074244	．178！83	－．095384	－oti4nan	－0ヵ2かつ5
19	－ 20089 P	－ 057317	－182941	－．094n05	－．097524	－074381
27	－216864	－ 071695	－18376ia	－．094111	－．112681	－ 0174005
21	－ 232278	． 057993	－183376	－．104943	－．108403	－ 0 － 6 grab
$? ?$	－ 220807	－0316：5	－177890	－．1998853	－． 173735	－ 076,332
73 34	－2197日C	．075n7r	.171714	－．11942022	－． 107567	－．041763
24	－222198	－Dacnzr	． 170615	－．105ア71	－0895．58	－－DESClo
25	－25．3174	.085007	.174886	－． 107879	－． 103404	－． 00.3636
76	． 249871	－094261	－19n979	－ 0904808	－jocmara	$\cdots \cdot 0 口 1018$

APPENDIX R
COMPOSITE WEEKLY API

Week	1 and 4
-52	. 005321
-51	.003217
-50	. 1008971
-49	. 013985
-48	. 013384
-47	. 015103
-46	. 019029
-45	. 021998
-44	. 026991
-43	. 039281
-42	.04276.
-41	. 046706
-40	. 051916
-39	. 051645
-38	. 144752
-37	. 036825
-36	. 050879
-35	. 045364
-34	-138920
-33	. 036636
-32	. 036911
-31	. 034665
-30	. 050250
-29	.04485)
-28	. 051271
-27	. 065906
-26	-061224
-25	.051745
-24	. 050155
-23	. 047001
-22	. 0493864
-21	. 060714
-20	. 067496
-19	. 069135
-18	.072471
-17	. 0789 Al
-16	. 182271
-15	.08318
-14	.097813
-13	.100222
-12	. 097194
-11	. 104302
-10	. 114896
-9	.118117
-8	.118113

Portfolio Combinations
2 and 5 $\quad 3$ and 6
$.002569 \quad 000.3755$
-.006523 .002207
$\cdots .004555 \quad .003480$
-.01773 . .000250
-.017582 .006877
-.024203 .013201
. .018543 . 011330
$.001679 \quad .016877$
$.001021 \quad .013206$
$0002894 \quad .02568 \mathrm{~s}$
-023573 - 0252 2.
$.030143 \quad .034724$
.01992 ? .029531
$.026328 \quad .024924$
$.003252 \quad .025033$
$.0183711 \quad .030861$
$.034079 \quad .037278$
.032267 .040841
$.033332 \quad .040773$
$0022438 \quad . n 35934$
.0377488
$.024251 \quad .039556$
$.073093 \quad .0483 \mathrm{F3}$
$.03055^{4} \quad .053085$
$.03008 \mathrm{Bh} \quad .056928$
$.030323 \quad .053691$
.017255 .064261
$.015651 \quad .062880$
$.014298 \quad .059670$
$.014122 \quad .06213{ }^{\circ}$
$.024536 \quad .073000$
$.029980 \quad .019121 .3$
$.022431 \quad .090964$
$.045691 \quad .091993$
$.036543 \quad .093161$
$.03576: 1.097312$
$.052391 \quad .11885,12$
.065174 .088320
.049715 - 049776
.05352 ? 0 .0R7910
$.06022 . \quad .091309$
.059224 .i95972
$.051475 \quad 0088691$
$.047739 \quad .090076$
.034993 .105138

APPENDIX R (continued)			
	Portfolio Combinations		
Week	1 and 4	2 and 5	3 and 6
- 7	. 122912	. 0145447	. 108588
-6	. 125257	. 0668374	. 112812
-5	-129179	. 0674311	-112575
-4	. 117898	. 062324	. 126009
-3	.117782	. 061421	.132337
-2	. 125653	.054879	. 128256
-1	. 126563	. 054713	. 128356
0	. 138761	-1,149114	. 140283
1	.138071	. 044788	.139483
2	. 132836	. 146507	. 133814
3	.136895	. 049129	. 135641
4	.143236	. 047754	.13607 ?
5	.140845	. 038130	. 139787
6	. 150099	.043815	.138946
7	. 15479 ?	. 033456	.129419
8	. 154801	. 034871	-137383
9	.150500	.033239	. 140313
10	. 153523	.033191	.145955
11	. 156408	.01899\%	. 154606
12	. 153196	. 023565	.150000
13	. 148176	. 022367	. 147744
14	. 141963	.019661	. 146056
15	. 147352	.020212	. 148409
16	. 141917	. 010944	. 1524411
17	. 141546	. 007990	-150374
18	. 25079 sj	.001006	-) 51267
19	. 156730	.003303	- 15363 h
20	.159507	.019194	. 154970
21	. 174750	. 019647	. 153511
22	. 164344	. 034613	. 144199
23	. 156776	. 042442	. 149773
${ }^{2} 4$. 164769	.032224	. $1390 \% 3$
25	. 181320	. 049979	. 141897
26	.175669	.041873	. 148765

APPENDIX R (continued)

Model 2, Panel B
Portfolio Combinations

Week	1 and 4
-52	. 000159
-51	. 005112
-50	. 003744
-49	-. 003056
-48	-. 006670
-47	-. 0003454
-46	-.0n235
-4E	. 001450
-44	.010157
043	.019943
-42	.015490
-41	. 016243
-40	.022773
-39	. 023771
- 38	. 029844
-37	. 024407
-36	.04067:1
-35	.032518
-34	. $03722 t$
-33	.03626)
- 32	. 037522
-31	. 036502
-30	. 046082
-29	.050611
-28	.051519
-27	. 05723 c
-26	.056194
-25	.056818
-24	. 051717
-23	. 043878
-22	.045442
-21	.042186
-20	.049339
-19	.050888
-18	.055699
-17	. 1051204
-16	.057721
-15	.056267
-14	.061239
-13	. 065659
-12	. 060720
-11	.0657?
-10	.073720
-9	.080419
-8	. 076908

2 and 5	3 and 6
-. 01.0979	. 0048838
-. 006435	. 004710
. 004279	.010090
-.004048	.009725
-.01538?	-. 000441
-.030702	.006762
-. 010384	. 006035
-.002156	-.000258
-.012649	.004822
-. $02508{ }^{\circ}$. 011549
-. 0124371	. 012965
-. 012043	.016000
-. 028275	.013882
-.033379	. 020017
-. 043798	.025051
-. 046694	. 022061
-.037808	. 025552
$\cdots .040393$. 0.30094
-. 049691	.031271
-.065660	.041800
-.065465	. 045052
-. 116929	. 040473
-.051521	. 051612
-. 0348611	.04630t
*.013884	.04971.
-. 020010	. 0537911
-.02409n	. 05417 d
-.025895	. 057679
-.035616	. 054819
*.02211	. 055590
-.010976	.055511
-. 014957	.054750
-005554	.066025
-0024221	.064099
$\cdots 036134$.05868
$\cdots .040551$. 055613
-. 142507	. 056536
-.018294	. 052340
-.028334	. 057305
-. 037663	.155113
$\cdots .043278$. 056481
-. 030964	.058123
-.014531	-1062651
.003168	. 0655501
-1295411	. 067091

APPENDIX R (continued)

Week $\quad 1$ and $4 \quad$Model 3, Pane1 C Portfolio Combinations			
-52	.004632	.003415	
-51	. 002810	. 002689	-.005243
- 50	-010266	-. 007398	-. 004719
-49	. 015389	-. 015443	-.006817
-48	. 014000	-.02139	-. 004344
-47	. 016784	-.022161	. 0006404
-46	. 020916	$\cdots 005436$. 006135
-45	- 021374	. 005034	-008605
-44	.025581	.00716J	.006838
-4.3	.03754b	. 013070	- 013054
-42	. 039204	. 029254	- n122?1
-41	. 042615	. 029088	.017998
-40	. 047667	. 012924	.017761
-39	.048310	. 013986	. 015251
-38	.045373	. 004008	. 015327
-37	. 032821	. 009554	. 021640
-36	. 045942	-002624	.029434
-35	. 04018334	. 004787	.027827
-34	. 037888 ?	.003873	.030024
-33	. 034449	-.001859	. 025049
-32 -31	.035831	. 0001851	. 025893
-30	.034941 .050289	. 001741	. 024443
-29	.050289 .043543	.002051	- C 28578
-? 8	. 051584	. 008095	. 033525
-27	.067713	.013745	. 035091
-26	.061437	. 006455	.037806
- 25	. 1056.576	.011415	. 0442921
-24	. 04905	. 012290	-038909
-23	. 046319	-006794	.039965
-22	. 050073	. 014580	-050734
-21	.058459	. 0144214	. 062465
- 20	. 0638483	.017537	. 07122 H
-19	. 068277	. 031971	. 0725 ? 2
-18	.07004n	. 071968	. 077501
-17	.075763	. 030351	. 078895
-16	. 079741	. 045997	-06899.)
-15	-080616	. 055906	.073071
-14	. 09601073	. 049753	. 076157
13	. 096771	. 057447	.078029
12	. 093175	. 066819	-088347
11	. 1 n202C	.0643411	- 087270
10	. 113265	. 061025	. 077863
-9	.115235	. 067734	-07762n
-8	.11279'	. 07970 ?	.091924

APPENDIX R (continued)			
		Portfollo Combinations	
Week	1 and 4	2 and 5	3 and 6
-7	. 116836	. 096008	. 093869
-6	. 117334	. 112461	. 096113
-5	. 121436	. 117955	.093953
-4	. 109752	. 10459 t	. 108743
-3	.111640	. 0134134	. 109298
-2	.116143	.108362	- 106956
-1	.116104	.109657	.1027111
0	. 130681	. 107953	.113191
1	.129674	. 103914	. 114286
2	. 125334	. 199871	. 112025
3	.128974	. 107280	. 115384
4	.133271	. 12746	. 116241
5	.136717	. 111104	-122025
6	. 141681	-118651	. 121315
7	.145295	. 115273	. 114573
8	. 147088	.116529	. 123756
9	.142252	. 111781	.125357
10	.143214	.124351	. 134364
11	. 145549	-113742	. $13921{ }^{\text {c }}$
12	. 145722	. 097924	.137544
13	.139391	-099894	. 136311
14	.131774	. 098643	. 12651%
15	. 136565	. 101033	. 128514
16	.133473	.085989	-131405
17	.132144	.093835	.130014
18	.140125	. 093560	-128265
19	.147269	.092731	. 125554
20	.148703	.105939	-126902
21	. 162746	.110400	. 129620
22	. 150045	.134760	. 120013
23	. 140868	. 139168	. 12304 m
24	. 148213	-1431n1	. 114113
25	. 161348	.1676511	. 118374
26	. 15651 u	. 150556	. 125766

		APPENDIX R (continued)	
		Model 4, Panel D	
Week	1 and 4	Portfolio Combinations 2 and 5	3 and 6
-52	. 003599	-.00583:	. 007047
-51	. 00100.3	-. 000523	.008721
-50	. 004340	. 002804	. 010864
-49	. 006578	-.022332	.009710
-48	-103991	-. 014160	.005841
-47	-0072月2	-. 015866	.012532
-46	.013362	-.004965	.011570
-45	. 015202	. 017473	.003928
-44	.02388\%	-006228	. 010653
-43	. 039107	.007911	. 019237
-42	. 036360	. 028355	-022659
-41	. 035776	. 024175	. 029194
-40	.039318	. 011493	. 023771
-39	. 040461	. 017457	. 021920
-38	. 042451	. 000074	-025261
-37	-032422	. 004946	.073941
-36	. 039728	.0183716	.03272.3
-35	. $0373 \mathrm{H7}$	- 222507	. 031170
- 34	-0i3Eち4i	. 019931	. 0345418
-33	-1033324	-010824	.034672
-32	-132221	-02563.3	-0391313
-31	- 033208	. 02.3856	.036587
-30	. 046565	. 032544	. 046807
-? ${ }^{-9}$. 045318	. 069137	.045751
-28	.053551	.072615	. 050749
-27	.071350	. 066.369	- 055888
-26	.068823	.064015	$.06500 \%$
-25	- 165315	-059222	. 066.3011
-24	- 061332	.071214	. 065313
-23	. 05634.3	. 071421	. 069546
-22	- 062092	. 08202 H	. 07301 ¢
-21	. 066347	.063711	. 1181798
-20	. 170512	-1168037	.1199192
-19	. 074024	- 06.4079	.097963
-18	.076224	-052324	.099560
-17	. 076761	. 071233	. 098605
-16	. 086429	.075164	. 195234
-15	- 085535	. 085858	.089591
-14	- 109966.3	. 062554	.098212
-13	- 105341	. 077443	.099737
-12	.105073	. 075397	. 105846
-11	. 109042	. 085477	.107297
-10 -9	. 113012	-08981:	.106031
-9	.118975	. 084344	.106331
-8	.120296	.0775411	. 119427

APPENDIX R (continued)

Portfolıo Combinations			
Week	1 and 4	2 and 5	3 and 6
-7	. 124199	.09037 H	. 12032 s
-6	. 124704	. 108452	.120371
-5	. 131224	. 098575	. 120112
-4	- 122422	. 104286	-1239911
-3	- 122280	. 1111646	. 121044
-2	. 128761	. 1111744	-122670
- 1	- 128331	-108856	. 1194881
0	. 140139	.105183	. 124898
1	.136091	. 1099548	-121533
2	.131603	.102617	. 116574
3	.136176	. 098373	-1176911
4	. 139772	. 0863401	. 125175
5	. 137463	. 081794	-129200
6	.143529	.083202	-126452
7	. 143678	. 077237	-124464
8	. 146850	. 07374 H	.126761
9	. 143501	. 073417	. 126344
10	.145543	. 080041	.136550
11	. 147875	. 064610	.139893
12	. 140414	- 072933	
13	.139817	.07293 .076145	.141664 .133501
14	. 1328.97	.078794	. 133991
15	. 132697	.0884869	. 133331
16	. 130641	.074601	.139643
17	. 13507%	. 068529	.14189?
18	.135906	.078438	.14015')
19	.135996	. 074551	-13973y
20	. 142336	-099261	-140083
21	. 154523	. 179636	. 137817
22	.149828	- 088230	. 137474
23	. 143351	-089002	.135917
24	. 151164	. 091972	.128671
25	. 166459	. 092463	.130613
26	. 156266	. 092126	.139256

APPENDIX S

AVERAGE WEEKLY API FOR FIRMS ANNOUNCING AND NOT ANNOUNCING EXTRAORDINARY ITEMS BEF'ORE WEEK ZERO

WEEK	FIRMS ANNOUNCING ($\mathrm{n}=39$)	FIRMS NOT ANNOUNCING ($n=59$)
-52	-. 005515	. 001956
$\cdots 51$	-.010131	. 001165
-50	-.022070	.004652
-49	-.0175\%4	-000143
-48	-0022124	. 002019
-4\%	-.019142	-. 007.376
-46	-.022444	-.006904
-45	-.012811	-.005781
-44	-0009497	-. 004875
-43	-.025408	-006616
-42	-.030447	$\bigcirc 003345$
-41	-0024789	-002162
-40	-029951	. 000224
-39	--032261	. 001673
- 38	-034188	.011837
-37	$\cdots: 0234 \geq 2$. 014390
-36	- 0.026775	.014196
-35	-. 027428	.018151
-34	-.078394	-015227
-33	- -046062	$\bigcirc 009451$
-3?	-.044ら86	-009491
-31	-. 052276	-.002479
-30	-057043	$\bigcirc 001085$
-79	-053439	-003877
-28	-0.064271	$\bigcirc 007784$
-27	-.070615	$\bigcirc 001484$
-26	-0.071043	-007779
-25	-. 059906	-011558
-74	-.053154	. 016288
-2.3	$\cdots 053974$	-0120\%
-22	-04409?	. 007206
-21	-040117	-. 001.360
-20	-054716	. 008858
-19	- 0060355	--007917
-18	-.06ncza	-012026
-17	-.058443	-.012562
-16	-.059883	-001083
-15	-0004R7	-001010
-14	-0058823	-.012734
-13	-. 053316	-. 004847
-1?	-05psoz	- 00006444
-11	- 053245	-000570
-10	- 044483	-019484
-4	- 0304008	- 012160
- ${ }^{4}$	-0029056	-0122az

APPENDIX S（continued）

－7	－．038969	.016971
－6	－020） 0893	－0c33472
－5	－：ncllfa	． 017364
－4	－．022647	． 1114014
－3	－ 1126531	．0146447
－2	－025021	－025114
－1	－0．014063	－031532
0	－－1126こ34	－032．383
1	$\cdots \cdot 019662$	．042712
2	－000977く	－046055
3	－0020407	－043390）
4	－01951\％	－043401
5	－01129717	－04020？
6	－：029436	：037709
7	－． 039559	－032629
8	－．033399	－032703
9	－． 037144	－034413
10	－．027625	－0＜1610
11	－． 033380	－029101
12	－．043170	．022599
13	－．029464	－033830
14	－．016635	－03505？
15	－ 0.01044 ？	．0．34543
16	－．00136．1	－031818
17	－．010784	－1033996
18	－．006151	－034．35？
19	－．004260	$\bigcirc 034418$
20	－．005798	$\bigcirc 042041$
21	－ 0004637	－039677
22	－．001588	－039237
23	－004243	－1）35001
24	－0000709	－034782
25	－118415	－0400131
26	－0く0513	－047036

APPENDIX T

AVERAGE WEEKLY API FOR FIRMS REPORTING NET EXTRAORDINARY LOSSES CLASSIFIED EY WHETHER THEY ANNOUNCED THE EXPRAORDINARY ITEMS PRIOR TO WEEK ZERO OR NOT

WEEK	ANNOUNCED ($n=23$)	DTDN'T ANNOUNCE ($n=30$)
-52	-.007524	-. 0000816
-51	-.012646	-. 0000876
-50	-0.118853	$\cdots 008697$
-49	-0.0041.39	-. 005808
-48	-.000971	.001046
-47	- 0005408	-.000255
-46	- 0009792	-. 005465
-45	-. 005780	-. 014760
-44	-000873	-0.00815
-43	-.016158	-.018364
-42	-. ()31333	-.018971
-41	-. 021955	-.025616
-40	--120412	-.025256
-39	--0こ0046	-.028573
-38	-.013342	-0.022177
-37	-. 002685	- 00094 ¢0
-36	-. 010478	-0025922
-35	-.011079	- -013068
-34	-.027419	-.012925
-33	-. 035303	-.016638
-32	-. 038340	-.009933
-31	-.046103	-.018049
-30	-. 055900	-.026376
-29	-:062109	-0.021219
-28	-.074733	-013422
- 27	-. 080625	- 022848
-26	-.079833	-.011310
-25	-.067154	-.009088
-24	-058332	-. 004193
-23	-0.053232	-.012836
-22	-:052995	-021929
-21	-050273	-030111
-20	-.1061107	-.029777
-19	-.048375	-. 0447304
-18	-. 1156713	-05 0280
-17	-. 1157204	- 042595
-16	-. 054613	-.030924
-15	-. 054717	-0032758
-14	-.048108	-0046733
-13	-.044352	-. 036354
-12	- 050460	- - 136855
-11	-.0142684	-0.032939
-10	- - 138258	-.032461
-9	-. 031690	"-ט32739
-8	-.026298	-.035741

APPENDIX T (continued)

WEEK		ANNOUNCED ($\mathrm{n}=23$)	DIDN'T ANNOUNCL ($\mathrm{n}=30$)
-7		-.050387	-. 025575
-6		-.040294	- 02¢390
-5		-.030935	-. 032648
-4		$\therefore 040076$	-.026294
-3		-. 026440	--1021672
-2		-0.0.32934	-0.017379
-1		-0.026789	-0017954
0		-.022280	-.018107
1		-. 0.015035	-.009403
2		. 001493	-.005382
3		-.017507	$\bigcirc 003127$
4		-.012304	-003101
5		-.021816	.005239
6		-0.007593	. 010754
7		- 0125563	-010084
8		-000860	-017887
9		-004342	-028214
10		-011532	-007379
11.		-005497	-021517
12		-. 020335	-020173
13		-. 0006654	-037602
14		:015786	$\bigcirc 039176$
15		$\bigcirc 025577$	-040449
16		-032824	$\because 046181$
17	"*	-0189913	-050563
18		-028400	-044463
19		.031755	-036945
20		-02?061	-0b3416
21		- 023882	-044666
22		$\bigcirc 027973$	-035370
33		$\bigcirc 0388442$	-032369
24		. 045637	-035354
25		-088765	$\bigcirc 030533$
26		-095051	-129432

APPENDIX U
CLASSIFICATION OF FIRMS BY SIGN OF NET EXTRAORDINARY ITEMSAND WHETHER THEY ANNOUNCED OR DID NOT ANNOUNCE THATTHEY WOULD HAVE EXIRAORDINARY ITEM(S)
Tickers of Firms That Reported Net Extraordinary Gains and Announced That They Had or Would Have an Item Reported as Extraordinary
ACK
ACY
BA
CWD
DCS
DIS
DSP
FLD
IK
MUN
PG
TET
TGT
UFG
USG
WU
Tickers of Firms That Reported Extraordinary Gains and Did not Announce
That They Had or Would Have an Item Reported as Extraordinary
BAI GVL NRT UFK
BFC HLR PRD ZE
BY HNS RAD
CNF HOB RES
CTS LKS RLM
CUM MHP RVB
DSN ML SA
GNN MS TFD
GO MYG UMT

APPENDIX U (continued)

Tickers of Firms That Reported Net Extraordinary Losses and Announced That They Had or Would Have an Item Reported as Extraordınary

AA MOT
AME PBI
CV PSM
DR RAH
FJQ ROF
FMO RXM
GPO SBC
GSX SDP
HMD W
HPG WHR
IKN Z
KMBTıckers of Firms That Reported Net Extraordınary Losses and Did NotArmounce That They Had or Would Have an Item Reported asExtraordinary

ABT	ENG	MB	TNB
ACN	FAM	MKC	UNC
ALS	GID	MAP	WKI
APX	GLR	OMK	
AVT	HAY	PCT	
BDK	HGH	PII	
BEC	HTN	RCC	
BIG	KW	SPA	
CAX	LCE	TG	

APPENDIX V

AVERAGE WEEKLY API FOR FIRMS REPORTING NET EXTRAORDINARY GALNS CLASSIFIED BY WHETHER THEY ANNOUNCED THE EXTRAORDINARY ITEMS PRIOR TO WEEK ZERO OR NO'T

-52	-. 002628	-104823
-51	-. 0065514	-004498
-50	-.026695	-1116394
-49	-.036764	-006299
-4 4	-0.03240	-004245
-47	- 038885	-.014746
-46	-010632	$\cdots .006343$
-45	-0.02919	-003507
-44	-.024405	-011615
-43	-.03R705	-0.32458
-42	-. 029175	- 026426
-41	-.038612	-122101
-40	$\cdots \because 043664$	-026542
-39	-.049821	-032963
-38	-.064153	-1147025
-37	-.034474	-039062
-36	-0.00703	$\bigcirc 055697$
-35	-.050930	-050454
-34	$\cdots .054180$. 044349
- 33	-.063477	-037457
-32	-. 053565	- 1229586
-31	-.061150	:113629
-30	-.058687	-029493
-79	-.040976	-029838
-28	-. 149232	-129722
-27	-.056227	.026654
-26	$\because 058407$	-127526
-25	-.1)49488	-037916
-24	-0.045710	- 037475
-23	-.055042	. 037854
-22	-.043483	$\bigcirc 037349$
-21	-026981	-028389
-20	-. 045529	-048826
-19	-009482	-032829
-18	-.065280	-029616
-17	$\because 061458$:018011
-16	-.067459	-034215
-15	-068782	. 031833
-14	-.074226	-1122438
-13	--066202	:027746
-12	0.054719	-025013
-11	-0068426	-035-34
-10	-0.53432	-052886
-9	-.023545	- OSRGOT
-9	-.033020	.061961

APPENDIX V (continued)

-7	-0.022556	. 060984
-6	.006996	-0779.35
-5	-.007128	.069100
-4	.002408	-055711
-3	-002286	-052218
-2	-0.01364	-069072
-1	-0005518	.077553
0	-.031919	. 084613
1	- 0026314	.096623
2	-.023529	$\bigcirc 099265$
3	-.024577	$\bigcirc 086058$
4	00029888	-0135091
5	-041076	-076553
6	- 0058397	-065594
7	-. 078366	-055952
8	- 0108965	. 048030
9	-. 096903	. 040825
10	-0833913	. 036347
11	-.089266	-036946
12	a.075994	. 025109
13	-.062254	-029928
14	-.063240	$\bigcirc 030185$
15	-002220	-028515
16	$\cdots 0050551$	$\because 016961$
17	-.053472	-01A853
18	-055819	-023493
19	$\because 065781$	$\because 0318 n 3$
20	-. 045846	-029860
21	-. 045634	$\bigcirc 034517$
22	-0.044082	$\bigcirc 043236$
23	-. 035742	-037724
24	- 0067551	$\bigcirc 042329$
25	-.081738	$\bigcirc 062165$
26	-.086635	.065247

APPENDIX W

AVERAGE WEEKLY API FOR FIRMS REPORTING EXTRAORDJNARY ITEMS CLASSIFIED BY MATERIALITY OF THE EXTRAORDINARY GAIN OR LOSS (NET')

Week
Large ($\mathrm{n}=22$)
Extraordinary Gain Large ($\mathrm{n}=22$) Small ($\mathrm{n}=23$)

Fxtraordinary Loss
Large ($n=25$)
Sma11 ($\mathrm{n}=25$)

-52	. 0.002618	-006757	-.007975	. 0001543
-51	-.013851	- 014388	. 002632	-.008714
-50	-.005081	-006960	c.000.3154	-. 017675
-49	-012143	-.00anl8	.007454	-.019831
-48	-024511	-001752	-011850	-. 014554
-47	-0.0333n7	-.013785	. 013897	-.021791
-46	-.017555	-026月51	-013649	-.032339
-45	.001262	-012729	. 009770	-.035361
-44	.007831	-.009922	. 014653	-.041659
-43	. 024046	-.009001	.010477	-.044558
-42	. 016568	-002824	-.00n821	-.050371
-41	-014913	-. 013258	-.007977	-. 037513
-4n	-013043	-.1109334	-.0n8571	-.035813
-39	.021873	--014018	-007176	-.035284
- 38	-023708	-00RO13	-006525	-.033421
-37	-024136	-011730	.016898	-. 016645
-36	.042508	$\cdots 005357$	-.005360	-0118755
-75	. 034114	-.004439	. 003032	-.004218
-74	. 029321	-009R17	-.011750	-.005799
-33	.015783	-.012027	-.018363	-.013169
-3?	.012031	-.011467	-.015451	-.010467
-31	-.004651	-.010906	-.024057	-. 018643
-30	.008812	-.017ngr	$\cdots .040515$	-. 019255
-29	. 017892	-0.007996	-.05n784	-. 007042
-78	. 021003	-.nlgaf3	-.055719	-.007130
-27	. 025348	-. 1029753	-.054239	-. 233849
-26	.021518	-.026507	-. 044125	-. 017854
- 25	.03?159	-.023685	-.042n23	-.011556
-24	-035106	--008563	- . 136946	-.0n9107
-23	. 029967	-.019225	-040n20	-.00R625
-72	.041334	- 02? 0 ¢94	-.033159	-.023960
-21	. 034170	-01565A	- 0400681	-.024503
-20	-033n63	-.001735	-.053568	-.016055
-19	-011658		-.050335	-.034118
-19	-007295	- - пlatg6	-. 051648	-004268,
-17	-006646	-.01305A	-. 057386	-.027570
-16	- D06073	.007021	-.061917	-0002638
-15	-010918	. 0007636	-0.076855	. 01 n825
-14	-. 118795	-.005845	- - otaral	.00350́9
-13	-. 023373	. 111787	-.077800	-121021
-17	-0.016473	-009229	-.078579	-1113359
m11	-.018419	. 014444	-.076761	.1)17611
-10	-003632	-026039	-.071348	.012077

APPENDIX W (continued)

	Extraordinary Gain		Extraordinary Loss	
Week	Large ($\mathrm{n}=22$)	Small ($n=23$)	Large ($\mathrm{n}=25$)	Sma11 ($\mathrm{n}=25$)
-9	.011780	-147770	-.085410	.034302
-8	. 0111302	. 044343	-.076672	.023982
-7	-020ヶn1	. 041305	m.090384	.030771
-6	. 044876	-06nand	-.072116	. 111439
-5	-040499	. 1043430	- AAPR10	-023992
-4	-046645	-027302	-.080859	. 016636
- 3	- n 37470	-028410	-.074557	- 030 ngo
-2	- 037418	.0418nB	- 076656	- ก20r38
-1	-038430	. 057186	-. 073478	- 036698
0	-038007	. 048127	-. 0667754	- 029194
1	-033686	-0713n?	-. 056740	- 031948
2	-031618	- 078549	-.053178	.042424
3	-022240	- 170137	*.059595	.046919
4	. 023674	- 063852	- - 05RRE6	. 049955
5	-01\%298	. 051404	-.058019	. 146234
6	-009007	. 033466	-.055701	-065178
7	-.013324	- 028977	-.055783	-064390
8	-.021873	-1)23990	-.049030	-0754?1
9	-.027921	.010771	-. 1556659	-092341
10	-. 1135219	.021142	-.063622	-084678
11	-.032408	-1)15485	-.04R679	- 0 R1555
12	- 0.032920	-01n282	-.054742	-050924
13	-.022290	. 015749	-. 032538	-074667
14	- 0 21836	. 015709	-. 016525	-07RAgS
15	-. 024566	- 026168	-000597	.075259
16	-.0312a3	-016142	.011861	. 076537
17	-.040945	-023223	.006019	. 078102
18	-.135414	. 025168	.009159	.078638
19	-.037834	-0.0.5745	.000418	.079317
20	-.022500	- 027279	-007357	- 089077
71	-0.023945	. 034680	-.002500	-083109
72	- 0 255667	.04R3n6	-.01977?	-1995539
23	--1)27484	-049991	-. 001306	-076743
24	-. 037971	-1)42699	.004914	-080715
25	-.032971	.053058	-. 0009636	. 119876
26	-.031885	- 152499	-. 009687	.124703

APPENDIX XCLASSIFICATION OF FIRMS BY SIGN AND MAGNITUDE OFNET EXTRAORDINARY ITEMS
Tickers of Firms that Reported Large Net Extraordınary Gains
ACK HNS TFD
BA HOB UFG
BAI IK UMT
CUM ML UPK
CWD NRT USG
DSP PG WU
FLD RLM ZE
gVL
Tickers of Finms that Reported Small Net Extraordinary Gains
ACY GNN PRD
BFC GO RAD
BY HLR RES
CNF LKS RVB
CTS MHP SA
DCS MS TET
DIS MON TGT
DSN MYG
Tickers of Firms that Reported Large Net Extraordinary Losses
AA GSX PII
ACN HAY RCC
AME HMD SBC
APX HPG SPA
AVT HTN TG
CV KMB UNC
DR KWW
LCE FMO WHRGPO

APPENDIX X (continued)

Tickers of Firms that Reported Small Net Extraordinary Losses

ABT	GLR	PCT
ALS	HGH	PSM
BDK	MB	RAH
BEC	MKC	ROF
BIG	MOT	RXM
CAX	MRP	TNB
ENG	OMK	WKT
FAM	PBI	Z
FJQ		

APPENDIX Y

WEEK ZERO API BY FIRM

| Firms Reporting | Firms Not Reporting | | |
| :--- | :---: | :---: | :---: | :---: |
| Extraordinary Items | Extraordınary Items | | |
| Ticker | API | Ticker | $A P I_{0}$ |

AA	.1730113	1011	－4 1 ¢ 37\％
AHT	．1926103	aus	． 1 2 Y－ 13
Ark	－．0．97114	429	． 129005
A 11	－101ら1」	A， 1	－． 0.7017
$n \mathrm{Cr}$	－312月）	4．6	． 224278
ALS	－． 22 ¢7ック	－14	.$\rightarrow 12070$
$\triangle M F$	－．nciun＋4	＋1	－20小アら！
ALX	．1n9417	Hi）$\%$	－． 2201145
AVT	． 123014	HFK	
＋A	－30152，	3）！	．
HAI	．1］4ヶ41）	21．t	－．12a1］
HIIK	－．1＋0）	31 H	－． $26.4+3$ ，
HFC	－ 25.7 7－3	015	－．11U！
RFC	\＃．a＞490ts	CrF	－． 170110
［If	－．100045	rek	．17311．
my	．1－3．37\％	（111）	－．6414．．
cax	－．nつけが， 7	（1．1）	．41） 404 H
CAF	－．0！4かit］	（n）	． 231.345
ris	－．－m8203	cos	． 33311 ¢
rum	－．171914	cot	－404らガっ
c．v	－． 31025	6.12	．0514ヶ5
Clun	． 24052 C	C．25	－．1xy
nes	－． 1534 ＞4	CSM	－． 343191
nis	－．．45．3110	）fr	．1547ッh
D） H	－．1ramis	「） 1.	． 330.41$)$
164	． 244531	1）wy	－． 3 31275
HSM		FAF	． 23 Shala
fNe，	－．3ヶly心n	FK	－． 443 317
FRA	－．nncioll	fis	
FJu	1．521くd7	F 210	－． 463494
f（1）	－． 2 こ11m1	＋2）	． 17484 c
FiMn	．114711	FrF	． 112159
r，11）		FI．${ }^{\text {r }}$	
6．110	－。大么」3いる	rix	－11リダ1
r，Nil	－．1480071	F T	－गlyairs
（i）	．1－21－4	bat	1．55¢544／4
sipo	－．142ヶロッ3	gind	－．033294
（，$\times 1 \times$	－．リンアサ7！	5 F	． 3 3ヶハい4
f，vi	－．914813	ir，${ }^{\text {a }}$	－130ヶ41
HAT	－．＂15tibun	irnte	－34066420
H／ H ＋		1，00	

APPENDIX Y（continued）

Firms Reporting		Firms Not Reporting Extraordinary Items Ticker$\quad \mathrm{API}_{0}$

Mい	－．91911	（4）	－． 178414
HM0）	－． $18(4)+3$	Hal	－．071っつ7
Mins		－15	－ 217 －${ }^{\text {a }}$
HCH	． 148373	H1	－． 130080
hife	－． 113321	$1 \%^{*}$	－．194318
HTV	－． 111454	i	－nysin\％
ik	－．198を－7	JJJ	－242071
jKiN		KFL	． 0.79 mat
FMr	－．941930）	$n: 1$	． $13+3 \cdots 1$
K	－．1131	$\times 11$	$-0^{-n+a+n)}$
$16 F$	－．141－1	＜，ه	－へ1゙きに
IKM	．526く＂7	1191	． 0147119
Mis	－．1171．2	L＇	－．．？く774
NHP	．1943＋3	1ins	．11／41\％
$n \times C$	． 117 ワ10	15	－．ク75以？
\cdots		Of	－18ちゝ11
401	－12934	14.4	－． 3 44n）？
1 HO	－． $26.38+1$	1， 25	－1107096
\cdots	$.1791<0$	\cdots	－．111977
\cdots	． 35 ¢134	1	－． 331307
＂Yr，	． 397744	15	．त3ヶ\％11
nit	． 040111	139	－． 261973
nink	．2ntios	＇1，1）	－．194／142
PFiI	－． 124 人54	1，4	． 57 1ヶ94
FCT	－11441＇1	$\cdots 1 /$	．180364
wr	－． $3 \times 43=7$	のッ1	－．037－61
fil	－． 3113345	－M	－．9113196
fro	－．0nçay	$0 \cdot 4$	
FSA	． 3 ¢ 4 － 0	DKN	－219480
DAD		口时	－156入th
WAH	－61035， 1	トTS	． 2203×4
－s	$-.2+41,1$	wn	－¢ \％94－4
Lfes	－¢ramo	2．11\}	－アリアムア3
W！	－．454ヶハリ	$\rightarrow T x$	－以1101？
Sof	－．1753．0	－11	－．151457
以VF．		480	．アコされる
0×1.1	－．ncouns	so x	－1．20以40
SA	$\cdots \cdot 1092$ 为	s＋m	－．19233：
SPAC	．1317っ4	21m	－．111＋17
cif	－． 307014	410	－．41／151
¢，PA	$-.116141$	4kC	
Tt T	－n）	「кし	－ 034 ata
TFI）		ら＾jK	． 03 亿行

APPENDIX Y（continued）

Firms Reporting	Firms Not Keporting
Extraordinary Items	Extraordinary Items
Ticker	API_{0}

TG	．1142，	$\rightarrow-1$.	
TGT	－．trisldy	blo	－．nny lut，
TNuN	－ग2ら034	，1111	－． $0 \cdot \mathrm{p}+317$
liFg	－．14201	ir	－． 123149
1 MT	.1040 .1	\dagger	
lva	－P67\％s	「以4	－．0ら16it
11FK		「＊1	－． 644137
1，5G	． 142341	Irc	． $15 / 274$
1.1	－－$i+113634$	VFC	． 234 ¢11
WHP	－2mntor	ITN	.130117
int T	－．11ヶrsory	W） 1	－？ $2+653$
， 11	－． $2+6004$	小戠	－．26illa
7	－．31－3 344	1154	－ 07044
7F	－1以116ち	1	－ 1136.1011

VJTA

Name: Thomas Arthur Buchman
Date of Burth: July 21, 1942

Education

1948-1960	Various public elementary, junior high and high schools
1960-1965	Unıversity of Illınois at Urbana-Champalgn
1965-1966	Southern Illanois University at Carbondal
1969-1976	Universıty of Illinoos at Urbana-Champaign
	Degrees
B.S. - 1965	University of Illinois at Urbana-Champalg Major: Industrial Administration
M.A.S. -1970	Unıversity of Illinois at Urbana-Champaig Major: Accounting

Experıence

Jan-April 1967 Staff Accountant, Touche, Ross \& Co., Chıcago, 111. 1969-1973

1974-1976 Assistant Professor, Department of Accountancy, University of Colorado at Boulder

Professional Certification

Certıfıed Public Accountant (Illınois)

Publications

"Use of the Box-Jenkins Approach to Forecast Tourisl arrivals" (joint. author), Journal of Travel Research 14 (1976): 5..8.

Professinnal Societies
Amerıcan Accountung Association
American Institute of Certafied Public Accountants
American Institute of Decision Science
Colorado Society of Certified Public Accountants
EDP Auditors Association
Institutc of Internal Auditors
National Assoczation of Accountants

[^0]: \dagger Required for doctor's degree but not for master's

[^1]: $1_{\text {Similar }}$ events are defined as those events whose qualitative dimensions (thear general nature, Cumming had 43 different categories) and quantitative dimensions (measured by net of tax magnitude of the event divided by the corporation income without the unusual event) appeared to be quite similar.

[^2]: *No extraordinary items reported for firms in this portfolio.
 $a_{\text {The }}$ Kruskal-Wallis statistic corrected for ties (API's within 5×10^{-5} of each other were arbitrarily decided to be ties). The first H statistic in each cell is a comparzson of the API in portfolios 1 , 2 and 3; the second H statistic in each cell is a comparison of the API's in portfolios 4, 5 and 6; the third H statistic in each cell is a comparison of the API's in all portfolios.
 $b_{\text {The probability of exceeding } H}$ if the null hypothesis of identical populations is true. cAPI's significantly different from zero using a two-tailed t-test at $\alpha=.01$.
 ${ }^{\text {d }}$ API's significantly different from zero using a two-tailed t-test at $\alpha=.05$.

